Home Researches CG Gallery Publications Education Members History Contact & Links [English] [Sitemap]

 

Publications(研究論文)

 

                                          2022年9月1日現在
Contents


Web of Science掲載論文
全文審査論文(英文,和文)
 粒子法(主要文献,単相流一般,混相流・剛体・弾性体,高精度粒子法(CMPS/CISPH),乱流モデル,
             3次元化・並列化)
 数値流砂水理学(主要文献,単一粒子追跡,混相流モデル,粒状体モデル,剛体モデル)
 群集行動モデル(主要文献,津波避難解析,その他の解析)
 海岸工学一般(波浪,漂砂,構造物,環境)
書籍
総説・解説(粒子法,数値流砂水理学,群集行動モデル)
招待講演等
国際会議論文集等(審査付)(粒子法,数値流砂水理学,群集行動モデル,海岸工学一般)

受 賞

編 数  学術論文(英文)[全文査読] 111編
     学術論文(和文)[全文査読] 235 編
     国際会議論文集等[審査付] 120 編
     国内シンポジウム論文集等[審査付] 10 編
     計 476編

     著書 9 編
     総説・解説等 11 編
     招待講演等 20 件


Web of Science掲載論文

  • Gotoh, T., Khayyer, A. and Gotoh, H. (2024). Enhanced schemes for resolution of the continuity equation in projection-based SPH. Engineering Analysis with Boundary Elements. 166: 105848.[Link] 
  • Harada, E., Tazaki, T. and Gotoh, H. (2024). Investigation of turbulent flow induced by particle sedimentation using RIM-PIV, J. Hydro-environment Res. 54: 13-25. [Link]
  • Khayyer, A., Shimizu, Y., Lee, C. H., Gil, A., Gotoh, H. and Bonet, J. (2023). An improved Updated Lagrangian SPH method for structural modelling. Comput. Particle Mech. Published online: 27 Nov. 2023 [Link] 
  • Khayyer, A., Gotoh, H. Shimizu, Y. and Gotoh, T. (2023). An improved Riemann SPH-Hamiltonian SPH coupled solver for hydroelastic fluid–structure interactions. Engineering Analysis with Boundary Elements. 158: 332-355.[Link] 
  • Tsuruta, N., Khayyer, A. and Gotoh, H. (2023). Development of Advective Dynamic Stabilization scheme for ISPH simulations of free- surface fluid flows. Computers & Fluids. 266:106048.[Link] 
  • Tazaki, T., Harada, E., Gotoh, H.(2023). Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme. Coastal Engineering Journal. 65(2): 347-368. [Link]
  • Khayyer, A., Shimizu, Y., Gotoh, T. and Gotoh, H. (2023). Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows. Applied Mathematical Modelling. 116: 84-121. [Link]  
  • Ikari, H., Gotoh, H. (2023). Fully implicit discrete element method for granular column collapse. Comp. Part. Mech. 10: 261–271. [Link] 
  • Shimizu, Y., Gotoh, H., Khayyer, A. and Kita, K. (2022). Fundamental Investigation on the Applicability of a Higher-Order Consistent ISPH Method. International Journal of Offshore and Polar Engineering. 32(3): 275-284. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An implicit SPH-based structure model for accurate Fluid–Structure Interaction simulations with hourglass control scheme. European Journal of Mechanics-B/Fluids. 96: 122-145. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms. Engineering Analysis with Boundary Elements. 137:160-181. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity. Ocean Systems Engineering. 12(1): 63-86. [Link] 
  • Tazaki, T., Harada, E. and Gotoh, H. (2022). Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme. Coastal Engineering. 175: Article 104146.[Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An implicit SPH-based structure model for accurate Fluid–Structure Interaction simulations with implicit hourglass control scheme. European Journal of Mechanics / B Fluids. 96: 122-145. [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y. (2022). On systematic development of FSI solvers in the context of particle methods. Journal of Hydrodynamics. 34: 395-407.  [Link]
  • Tsurudome, C., Liang, D., Shimizu, Y., Khayyer, A. and Gotoh, H. (2021). Study of beach permeability’s influence on solitary wave runup with ISPH method. Applied Ocean Research. 117: Article 102957. [Link] 
  • Harada, E., Ikari, H., Tazaki, T. and Gotoh, H.(2021). Numerical simulation for coastal morphodynamics using DEM-MPS method. Applied Ocean Research.  117: Article 102905. [Link] 
  • Gotoh, H., Khayyer, A. and Shimizu, Y.(2021). Entirely Lagrangian Meshfree Computational Methods for Hydroelastic Fluid-Structure Interactions in Ocean Engineering – Reliability, Adaptivity and Generality. Applied Ocean Research. 115: Article 102822. [Link] 
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Nishijima, Y.(2021). A 3D Lagrangian meshfree projection-based solver for hydroelastic Fluid-Structure Interactions. Jour. Fluid and Structures. 105: Article 103342. [Link]
  • Khayyer, A., Shimizu, Y., Gotoh, H. and Hattori, S.(2021). Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering. Ocean Engineering . 226: Article 108652. [Link]
  • You, Y., Khayyer, A., Zheng, X., Gotoh, H. and Ma, Q.(2021). Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme. Applied Ocean Research . 110: Article 102508.    [Link]
  • Tsuruta, N., Khayyer, A., Gotoh, H. and Suzuki, K.(2021). Development of Wavy Interface model for numerical wave flumes corresponding to particle methods. Coastal Engineering. 165: Article 103861. [Link]
  • Tazaki, T., Harada, E. and Gotoh, H.(2021). Vertical sorting process in oscillating water tank using DEM-MPS coupling model. Coastal Engineering. 165: Article 103765.   [Link]
  • Harada, E., Tazaki, T. and Gotoh, H.(2020). Numerical investigation of ripple in oscillating water tank by DEM-MPS coupled solid-liquid two-phase flow model. Journal of Hydro-environment Research. 32: 26–47.   [Link]
  • Khayyer, A., Shimizu, Y., Gotoh, H. and Nagashima, K.(2021). A coupled Incompressible SPH–Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Applied Mathematical Modelling. 94: 242-271.   [Link]
  • Shimizu, Y., Khayyer, A., Gotoh, H. and Nagashima, K.(2020). An enhanced multiphase ISPH-based method for accurate modeling of oil spill. Coastal Engineering Journal. 62(4): 625–646. [Link] 
  • Ikari, H., Yamano, T. and Gotoh, H.(2020). Multiphase particle method usingan elastoplastic solid phase model for the diffusion of dumped sandfrom a split hopper. Computers & Fluids. 208: 104639. [Link]
  • Wang, L., Khayyer, A., Gotoh, H., Jiang, Q. and Zhang, C.(2019). Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme. Applied Ocean Res. 86: 320-339. [Link]
  • Harada, E., Ikari, H., Khayyer, A. and Gotoh, H.(2019). Numerical simulation for swash morphodynamics by DEM–MPS coupling model. Coastal Engineering Journal. 61(1): 2-14. [Link]
  • Tsuruta, N., Gotoh, H., Suzuki,K., Ikari, H. and Shimosako, K. (2019).Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems. Coastal Engineering Journal. 61(1): 41-62. [Link]
  • Khayyer, A., Tsuruta, N., Shimizu, Y. and Gotoh, H.(2019). Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Applied Ocean Res. 82: 397-414. [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y.(2019). A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields. Computers & Fluids. 179: 356-371. [Link]
  • Harada, E., Gotoh, H., Ikari, H., Khayyer, A.(2019). Numerical simulation for sediment transport using MPS-DEM coupling model. Adv. Water Res. 129: 354-364. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y.(2018). An Enhanced ISPH-SPH Coupled Method for Simulation of Incompressible Fluid-Elastic Structure Interactions. Comput. Phys. Commun. 232: 139-164. [Link]
  • Shimizu, Y., Gotoh, H. and Khayyer, A.(2018). An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept. Comput. Math. Appl. 76(5): 1108-1129. [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K., Falahaty, H. and Shao, S.(2018). Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity. Coastal Eng. 140: 1-22. [Link]
  • Gotoh, H. and Khayyer, A.(2018). On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Eng. J. 60(1): 79-103. [Link]
  • Ikari, H. and Gotoh, H.(2018). Numerical modeling of density currents using an Incompressible Smoothed Particle Hydrodynamics method. Computers and Fluids. 167(15):372–383. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y.(2018). Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction. J. Hydrodynamics. 30(1): 49–61. [Link]
  • Harada, E., Ikari, H., Shimizu, Y., Khayyer, A. and Gotoh, H.(2018). Numerical Investigation of the Morphological Dynamics of a Step-and-Pool Riverbed Using DEM-MPS. J. Hydraul. Eng. 144(1): 04017058-1-10. [Link]
  • Falahaty, H., Khayyer, A. and Gotoh, H.(2018). Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction. J. Fluids and Structures. 81: 325–360. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y. and Nishijima, Y.(2017). Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming. Ocean Systems Eng. - An International Journal. 7(3): 299-318.   [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y.(2017). Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J. Compt. Phys. 332(1): 236-256. [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Gotoh, K.(2017). On enhancement of energy conservation properties of projection-based particle methods. European Journal of Mechanics - B/Fluids. 66: 20-37. [Link]
  • Shimizu, Y. and Gotoh, H.(2016). Toward Enhancement of MPS Method for Ocean Engineering: Effect of Time-Integration Schemes. International Journal of Offshore and Polar Engineering. 26(4): 378–384.
  • Hwang, S. C., Park, J. C., Gotoh, H., Khayyer, A. and Kang, K. J.(2016). Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method. Ocean Engineering. 118: 227–241. [Link]
  • Gotoh, H. and Khayyer, A.(2016). Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. Journal of Ocean Engineering and Marine Energy. 2(3): 251-278. [Link]
  • Khayyer, A. and Gotoh, H.(2016). A Multiphase Compressible-Incompressible Particle Method for Water Slamming. International Journal of Offshore and Polar Engineering. 26(1): 20-25. [Link]
  • Ikari, H. and Gotoh, H.(2016). SPH-based simulation of granular collapse on an inclined bed. Mechanics Research Communications. 73: 12–18. [Link]
  • Harada, E., Gotoh, H. & Rahman, N. B. A.(2015). A switching action model for DEM-based multi-agent crowded behavior simulator. Safety Science. 79: 105–115. [Link]
  • Harada, E., Gotoh, H. & Tsuruta, N.(2015). Vertical sorting process under oscillatory sheet flow condition by resolved discrete particle model. Journal of Hydraulic Research. 53(3): 332-350. [Link]
  • Tsuruta, N., Khayyer, A. and Gotoh, H.(2015). Space potential particles to enhance the stability of projection-based particle methods. International Journal of Computational Fluid Dynamics. 29(1): 100-119. [Link]
  • Ikari, H., Khayyer, A. and Gotoh, H.(2015). Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy. 1(4): 361-376. [Link]
  • Hwang, S.C., Khayyer, A., Gotoh, H. and Park, J.C.(2014). Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems. J. Fluids and Structures. 50: 497-511. [Link]
  • Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T. & Shimosako, K.(2014). On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Res. 46: 104–115. [Link]
  • Liang, D., Gotoh, H., Scott, N. & Tang, H.(2013). Experimental Study of Local Scour around Twin Piles in Oscillatory Flow. J. Waterway, Port, Coastal, Ocean Eng. 139(5): 404–412. [Link]
  • Tsuruta, N., Khayyer, A. & Gotoh, H.(2013). A Short Note on Dynamic Stabilization of Moving Particle Semi-implicit Method. Computers & Fluids. 82: 158–164. [Link]
  • Liang, D., Gotoh, H., Khayyer, A. & Chen, J. M.(2013). Boussinesq modelling of solitary wave and N-wave runup on coast. Applied Ocean Res. 42: 144–154. [Link]
  • Khayyer, A. & Gotoh, H.(2013). Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. Journal of Computational Physics. 242: 211–233. [Link]
  • Harada, E., Tsuruta, N. & Gotoh, H.(2013). Two-phase flow LES of the sedimentation process of a particle cloud. Journal of Hydraulic Research. 51(2): 1-9. [Link]
  • Khayyer, A. & Gotoh, H.(2012). A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations. Applied Ocean Res. 37: 120-126. [Link]
  • Gotoh, H., Harada, E. & Andoh, E.(2012). Simulation of pedestrian contra-flow by multi-agent DEM model with self-evasive action model. Safety Science. 50(2): 326-332. [Link]
  • Hajivalie, F., Yeganeh, A., Houshanghi, H. & Gotoh, H.(2012). Euler-Lagrange model for scour in front of vertical breakwater. Applied Ocean Res. 34: 96-106. [Link]
  • Harada, E., Gotoh, H. & Tsuruta, N.(2011). Numerical Simulation for Sedimentation Process of Blocks on a Sea Bed by High-Resolution Multi-Phase Model. Coastal Eng. Jour. 53(4): 343-364. [Link]
  • Hori, C., Gotoh, H., Ikari, H. & Khayyer, A.(2011). GPU-acceleration for Moving Particle Semi-Implicit Method. Computers and Fluids. 51(1): 174-183. [Link]
  • Khayyer, A. & Gotoh, H.(2011). Enhancement of stability and accuracy of the moving particle semi-implicit method. Journal of Computational Physics. 230(8): 3093-3118. [Link]
  • Oka, F., Kimoto, S., Takeda, N., Gotoh, H. & Higo, Y.(2010). A seepage-deformation coupled analysis of an unsaturated river embankment using a multiphase elasto-viscoplastic theory. Soils and Foundations. 50(4): 483-494. [Link]
  • Khayyer, A. & Gotoh, H.(2010). Discussion on “Numerical simulation of impact loads using a particle method” [Ocean Engineering, 37(2–3): 164–173,February 2010]. Ocean Engineering. 37(16): 1477-1479. [Link]
  • Khayyer, A. & Gotoh, H.(2010). On particle-based simulation of a dam break over a wet bed. Jour. Hydraulic Res., IAHR. 48(2): 238-249. [Link]
  • Khayyer, A. & Gotoh, H.(2010). A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method. Applied Ocean Res. 32: 124-131. [Link]
  • Khayyer, A. & Gotoh, H.(2009). Wave Impact Pressure Calculations by Improved SPH Methods. International Journal of Offshore and Polar Engineering. 19(4): 300-307. [Link]
  • Gotoh, H.(2009). Lagrangian Particle Method as Advanced Technology for Numerical Wave Flume. International Journal of Offshore and Polar Engineering. 19(3): 161-167. [Link]
  • Khayyer, A., Gotoh, H. & Shao, S.(2009). Enhanced predictions of wave impact pressure by improved Incompressible SPH methods. Applied Ocean Res. 31: 111-131. [Link]
  • Yeganeh, A., Shabani, B., Gotoh, H. & Wang, S. S. Y.(2009). A Three-Dimensional Distinct Element Model for Bed-Load Transport. Jour. Hydraulic Res., IAHR. 47(2): 203-212. [Link]
  • Khayyer, A. & Gotoh, H.(2009). Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Eng. 56: 419-440. [Link]
  • Khayyer, A. & Gotoh, H.(2008). Development of CMPS Method for Accurate Wave-Surface Tracking in Breaking Waves. Coastal Eng. Jour. 50(2): 179-207. [Link]
  • Harada, E. & Gotoh, H.(2008). Computational Mechanics of Vertical Sorting of Sediment in Sheet Flow Regime by 3D Granular Material Model. Coastal Eng. Jour. 50(1): 1-27. [Link]
  • Khayyer, A., Gotoh, H. & Shao, S.(2008). Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Eng. 55: 236-250. [Link]
  • Gotoh, H. & Sakai, T.(2006). Key Issues in the Particle Method for Computation of Wave Breaking. Coastal Eng. 53(2-3): 171-179. [Link]
  • Shao, S. & Gotoh, H.(2005). Turbulence Particle Models for Tracking Free Surfaces. Jour. Hydraulic Res., IAHR. 43(3): 276-289. [Link]
  • Shao, S. & Gotoh, H.(2004). Simulating Coupled Motion of Progressive Wave and Floating Curtain Wall by SPH-LES Model. Coastal Eng. Jour. 46(2): 171-202. [Link]
  • Gotoh, H., Shao, S. & Memita, T.(2004). SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater. Coastal Eng. Jour. 46(1): 39-63. [Link]
  • Yeganeh, A., Gotoh, H. & Sakai, T.(2000). Applicability of Euler-Lagrange coupling multiphase-flow model to bed-load transport under a high bottom shear. Jour. Hydraulic Res., IAHR. 38(5): 389-398. [Link]
  • Gotoh, H. & Sakai, T.(1997). Numerical Simulation of Sheetflow as Granular Material.  Jour. of Waterway, Port, Coastal, and Ocean Engrg., ASCE. 123(6): 329-336. [Link]

Page Top

粒子法
主要文献

  • Gotoh, T., Khayyer, A. and Gotoh, H. (2024). Enhanced schemes for resolution of the continuity equation in projection-based SPH. Engineering Analysis with Boundary Elements. 166: 105848.[Link] 
  • Harada, E., Tazaki, T. and Gotoh, H. (2024). Investigation of turbulent flow induced by particle sedimentation using RIM-PIV, J. Hydro-environment Res. 54: 13-25. [Link]
  • Khayyer, A., Gotoh, H. Shimizu, Y. and Gotoh, T. (2023). An improved Riemann SPH-Hamiltonian SPH coupled solver for hydroelastic fluid–structure interactions. Engineering Analysis with Boundary Elements. 158: 332-355.[Link] 
  • Tsuruta, N., Khayyer, A. and Gotoh, H. (2023). Development of Advective Dynamic Stabilization scheme for ISPH simulations of free- surface fluid flows. Computers & Fluids. 266:106048.[Link] 
  • Khayyer, A., Shimizu, Y., Gotoh, T. and Gotoh, H. (2023). Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows. Applied Mathematical Modelling. 116: 84-121. [Link]  
  • Shimizu, Y., Gotoh, H., Khayyer, A. and Kita, K. (2022). Fundamental Investigation on the Applicability of a Higher-Order Consistent ISPH Method. International Journal of Offshore and Polar Engineering. 32(3): 275-284. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An implicit SPH-based structure model for accurate Fluid–Structure Interaction simulations with hourglass control scheme. European Journal of Mechanics-B/Fluids. 96: 122-145. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms, Engineering Analysis with Boundary Elements. 137:160-181. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity. Ocean Systems Engineering. 12(1): 63-86. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An implicit SPH-based structure model for accurate Fluid–Structure Interaction simulations with implicit hourglass control scheme. European Journal of Mechanics / B Fluids. 96: 122-145. [Link] 
  • Khayyer, A., Gotoh, H. and Shimizu, Y. (2022). On systematic development of FSI solvers in the context of particle methods. Journal of Hydrodynamics. 34: 395-407. [Link] 
  • Tsurudome, C., Liang, D., Shimizu, Y., Khayyer, A. and Gotoh, H. (2021). Study of beach permeability’s influence on solitary wave runup with ISPH method, Applied Ocean Research. 117: Article 102957. [Link] 
  • Harada, E., Ikari, H., Tazaki, T. and Gotoh, H.(2021). Numerical simulation for coastal morphodynamics using DEM-MPS method. Applied Ocean Research. 117: Article 102905. [Link] 
  • Gotoh, H., Khayyer, A. and Shimizu, Y.(2021). Entirely Lagrangian Meshfree Computational Methods for Hydroelastic Fluid-Structure Interactions in Ocean Engineering – Reliability, Adaptivity and Generality. Applied Ocean Research. 115: Article 102822.    [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Nishijima, Y.(2021). A 3D Lagrangian meshfree projection-based solver for hydroelastic Fluid-Structure Interactions. Jour. Fluid and Structures. 105: Article 103342. [Link] 
  • Khayyer, A., Shimizu, Y., Gotoh, H. and Hattori, S.(2021). Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering. Ocean Engineering. 226: Article 108652. [Link] 
  • You, Y., Khayyer, A., Zheng, X., Gotoh, H. and Ma, Q.(2021). Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme. Applied Ocean Research. 110: Article 102508.   [Link] 
  • Tsuruta, N., Khayyer, A., Gotoh, H. and Suzuki, K.(2021). Development of Wavy Interface model for numerical wave flumes corresponding to particle methods. Coastal Engineering. 165: Article 103861. [Link] 
  • Khayyer, A., Shimizu, Y., Gotoh, H. and Nagashima, K.(2021). A coupled Incompressible SPH–Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Applied Mathematical Modelling. 94: 242-271. [Link]
  • Shimizu, Y., Khayyer, A., Gotoh, H. and Nagashima, K.(2020). An enhanced multiphase ISPH-based method for accurate modeling of oil spill. Coastal Engineering Journal. 62(4): 625–646. [Link]
  • Ikari, H., Yamano, T. and Gotoh, H.(2020). Multiphase particle method usingan elastoplastic solid phase model for the diffusion of dumped sandfrom a split hopper. Computers & Fluids. 208: 104639. [Link]
  • Wang, L., Khayyer, A., Gotoh, H., Jiang, Q. and Zhang, C.(2019). Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme. Applied Ocean Res. 86: 320-339. [Link]
  • Harada, E., Ikari, H., Khayyer, A. and Gotoh, H.(2019). Numerical simulation for swash morphodynamics by DEM–MPS coupling model. Coastal Engineering Journal. 61(1): 2-14. [Link]
  • Tsuruta, N., Gotoh, H., Suzuki,K., Ikari, H. and Shimosako, K. (2019). Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems. Coastal Engineering Journal. 61(1): 41-62. [Link]
  • Khayyer, A., Tsuruta, N., Shimizu, Y. and Gotoh, H.(2019). Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Applied Ocean Res. 82: 397-414. [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y.(2019). A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields. Computers & Fluids. 179: 356-371. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y.(2018). An Enhanced ISPH-SPH Coupled Method for Simulation of Incompressible Fluid-Elastic Structure Interactions. Comput. Phys. Commun. 232: 139-164. [Link]
  • Shimizu, Y., Gotoh, H. and Khayyer, A.(2018). An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept. Comput. Math. Appl. 76(5): 1108-1129. [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K., Falahaty, H. and Shao, S.(2018). Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity. Coastal Eng. 140: 1-22. [Link]
  • Gotoh, H. and Khayyer, A.(2018). On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Eng. J. 60(1): 79-103. [Link]
  • Ikari, H. and Gotoh, H.(2018). Numerical modeling of density currents using an Incompressible Smoothed Particle Hydrodynamics method. Computers and Fluids. 167(15):372–383. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y.(2018). Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction. J. Hydrodynamics. 30(1): 49–61. [Link]
  • Falahaty, H., Khayyer, A. and Gotoh, H.(2018). Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction. J. Fluids and Structures. 81: 325–360. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y. and Nishijima, Y.(2017). Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming. Ocean Systems Eng. - An International Journal. 7(3): 299-318. [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y.(2017). Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J. Compt. Phys. 332(1): 236-256.[Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Gotoh, K.(2017). On enhancement of energy conservation properties of projection-based particle methods. European Journal of Mechanics - B/Fluids. 66: 20-37.  [Link]
  • Hwang, S. C., Park, J. C., Gotoh, H., Khayyer, A. and Kang, K. J.(2016). Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method. Ocean Engineering. 118: 227–241. [Link]
  • Gotoh, H. and Khayyer, A.(2016). Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. Journal of Ocean Engineering and Marine Energy.  2(3): 251-278. [Link]
  • Khayyer, A. and Gotoh, H.(2016). A Multiphase Compressible-Incompressible Particle Method for Water Slamming. International Journal of Offshore and Polar Engineering. 26(1): 20-25. [Link]
  • Ikari, H. and Gotoh, H.(2016). SPH-based simulation of granular collapse on an inclined bed. Mechanics Research Communications. 73: 12–18. [Link]
  • Tsuruta, N., Khayyer, A. and Gotoh, H.(2015). Space potential particles to enhance the stability of projection-based particle methods. International Journal of Computational Fluid Dynamics. 29(1): 100-119. [Link]
  • Ikari, H., Khayyer, A. and Gotoh, H.(2015).Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy. 1(4): 361-376. [Link]
  • Hwang, S.C., Khayyer, A., Gotoh, H. and Park, J.C.(2014). Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems. J. Fluids and Structures. 50: 497-511. [Link]
  • Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T. & Shimosako, K.(2014). On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Res. 46: 104–115. [Link]
  • Tsuruta, N., Khayyer, A. & Gotoh, H.(2013). A Short Note on Dynamic Stabilization of Moving Particle Semi-implicit Method. Computers & Fluids. 82: 158–164. [Link]
  • Khayyer, A. & Gotoh, H.(2013). Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. Journal of Computational Physics. 242: 211–233. [Link]
  • Khayyer, A. & Gotoh, H.(2012). A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations. Applied Ocean Res. 37: 120-126. [Link]
  • Hori, C., Gotoh, H., Ikari, H. & Khayyer, A.(2011). GPU-acceleration for Moving Particle Semi-Implicit Method. Computers and Fluids. 51(1): 174-183. [Link]
  • Khayyer, A. & Gotoh, H.(2011). Enhancement of stability and accuracy of the moving particle semi-implicit method. Journal of Computational Physics. 230(8): 3093-3118. [Link]
  • Khayyer, A. & Gotoh, H.(2010). Discussion on “Numerical simulation of impact loads using a particle method” [Ocean Engineering, 37(2–3): 164–173,February 2010]. Ocean Engineering. 37(16): 1477-1479.   [Link]
  • Khayyer, A. & Gotoh, H.(2010). On particle-based simulation of a dam break over a wet bed. Jour. Hydraulic Res., IAHR. 48(2): 238-249. [Link]
  • Khayyer, A. & Gotoh, H.(2010). A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method. Applied Ocean Res. 32: 124-131. [Link]
  • Khayyer, A. & Gotoh, H.(2009). Wave Impact Pressure Calculations by Improved SPH Methods. International Journal of Offshore and Polar Engineering. 19(4): 300-307. [Link]
  • Gotoh, H.(2009). Lagrangian Particle Method as Advanced Technology for Numerical Wave Flume. International Journal of Offshore and Polar Engineering. 19(3): 161-167. [Link]
  • Khayyer, A., Gotoh, H. & Shao, S.(2009). Enhanced predictions of wave impact pressure by improved Incompressible SPH methods. Applied Ocean Res. 31: 111-131. [Link]
  • Khayyer, A. & Gotoh, H.(2009). Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Eng. 56: 419-440. [Link]
  • Khayyer, A. & Gotoh, H.(2008). Development of CMPS Method for Accurate Wave-Surface Tracking in Breaking Waves. Coastal Eng. Jour. 50(2): 179-207. [Link]
  • Khayyer, A., Gotoh, H. & Shao, S.(2008). Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Eng. 55: 236-250. [Link]
  • Gotoh, H. & Sakai, T.(2006). Key Issues in the Particle Method for Computation of Wave Breaking. Coastal Eng. 53(2-3): 171-179. [Link]
  • Gotoh, H., Ikari, H., Memita, T. & Sakai, T. (2005). Lagrangian Particle Method for Simulation of Wave Overtopping on a Vertical Seawall. Coastal Eng. Jour. 47(2-3): 157-181.
  • Gotoh, H., Shibahara, T. & Sakai, T.(2001). Sub-Particle-Scale Turbulence Model for the MPS Method - Lagrangian Flow Model for Hydraulic Engineering -. Computational Fluid Dynamics Jour. 9(4): 339-347. 
  • Gotoh, H. & Sakai, T.(1999). Lagrangian simulation of breaking waves using particle method. Coastal Eng. Jour. 41(3-4): 303-326.
  • 後藤仁志,堀智恵実,五十里洋行,Khayyer Abbas.(2010).GPUによる粒子法半陰解法アルゴリズムの高速化.土木学会論文集B.66(2): 217-222. [Link]
  • 後藤仁志,Khayyer Abbas,堀智恵実.(2009).粒子法における圧力擾乱低減のための新しい自由水面判定条件の提案.土木学会論文集B2(海岸工学). 65(1): 21-25.  [Link]
  • 後藤仁志,林 稔,目見田哲,酒井哲郎.(2003).粒子法による直立護岸前面砕波・越波の数値シミュレーション.土木学会論文集.726(II-62): 87-98.
  • 後藤仁志,林 稔,酒井哲郎.(2002).固液二相流型粒子法による大規模土砂崩壊に伴う水面波の発生過程の数値解析.土木学会論文集.719(II-61): 31-45.

単相流一般

  • Tsurudome, C., Liang, D., Shimizu, Y., Khayyer, A. and Gotoh, H. (2021). Study of beach permeability’s influence on solitary wave runup with ISPH method. Applied Ocean Research. 117: Article 102957.[Link] 
  • Khayyer, A., Gotoh, H., Shimizu, Y.(2016). Development of a SPH-Based Method for Coastal Engineering-Related Heat Diffusion Problems. J. JSCE, Ser.B2, Coastal Engineering. 72(2): I_1213-I_1218.
  • Shimizu, Y. and Gotoh, H.(2016). Toward Enhancement of MPS Method for Ocean Engineering: Effect of Time-Integration Schemes. International Journal of Offshore and Polar Engineering. 26(4): 378–384.
  • Khayyer, A. & Gotoh, H.(2010). Discussion on “Numerical simulation of impact loads using a particle method” [Ocean Engineering, 37(2–3): 164–173,February 2010]. Ocean Engineering. 37(16): 1477-1479. [Link]
  • Oka, F., Kimoto, S., Takeda, N., Gotoh, H. & Higo, Y.(2010). A seepage-deformation coupled analysis of an unsaturated river embankment using a multiphase elasto-viscoplastic theory. Soils and Foundations. 50(4): 483-494. [Link]
  • Khayyer, A. & Gotoh, H.(2008). Particle-Based Vs. Grid-Based Simulation of Plunging Breaking Waves: A Basic Study. Jour. Hydroscience and Hydraulic Engrg., JSCE. 26(1): 1-9.
  • Gotoh, H., Ikari, H., Sakai, T. & Tanioka, H.(2007). Computational Dynamics of Stream in Underground Staircase by Three-Dimensional Particle Method. Jour. Hydroscience and Hydraulic Engrg., JSCE. 25(2): 13-22.
  • Khayyer, A. & Gotoh, H.(2007). Applicability of MPS Method to Breaking and Post-Breaking of Solitary Waves. Annual Jour. of Hydraulic Eng., JSCE. 51: 175-180.
  • Gotoh, H. & Sakai, T.(2006). Key Issues in the Particle Method for Computation of Wave Breaking. Coastal Eng. 53(2-3): 171-179. [Link]
  • Gotoh, H., Ikari, H., Memita, T. & Sakai, T.(2005). Lagrangian Particle Method for Simulation of Wave Overtopping on a Vertical Seawall. Coastal Eng. Jour. 47(2-3): 157-181.
  • Shao, S. & Gotoh, H. (2003). Pressure Analysis of Dam-Break and Wave-Breaking by SPH Model. Annual Jour. of Hydraulic Eng., JSCE. 47: 403-408.
  • Gotoh, H. & Sakai, T.(1999). Lagrangian simulation of breaking waves using particle method. Coastal Eng. Jour. 41(3-4): 303-326.
  • 五十里洋行,後藤仁志,脇嶋可成.(2022).MPS法におけるエネルギー保存性の改善と不規則波伝播計算への適用性.土木学会論文集B2(海岸工学).78(2): I_43-I_48. [Link]
  • 鶴田修己,後藤仁志,鈴木高二朗,Abbas KHAYYER,下迫健一郎,五十里洋行.(2016).高精度自由表面境界モデルを用いた粒子法のスロッシング現象への適用. 土木学会論文B2(海岸工学).72(2): I_49-I_54. [Link]
  • 後藤仁志,KHAYYER Abbas,五十里洋行,清水裕真.(2015).エネルギー保存性の高い粒子法による水面波の伝播計算.土木学会論文B2(海岸工学).71(2): I_25-I_30. [Link]
  • 鶴田修己,KHAYYER Abbas,後藤仁志.(2013).粒子法型の数値波動水槽のための高精度造波モデルの提案.土木学会論文集B2(海岸工学).70(2): I_31-I_35. [Link]
  • 後藤仁志,五十里洋行,有川太郎,下迫健一郎,野々田浩敏,吉永健二.(2013).ケーソン防波堤の津波越流時における目地の影響評価に関する数値解析.土木学会論文集B2(海岸工学).69(2): I_886-I_890.[Link]
  • 後藤仁志,原田英治,五十里洋行,安岡恒人,有光 剛,大江一也,鶴田修己.(2010).防波堤被覆ブロック群の安定性評価のためのワイヤー連結ブロック群シミュレーションの開発.土木学会論文集B2(海岸工学).66(1): 846-850.[Link]
  • 後藤仁志,原田英治,五十里洋行,大江一也,安岡恒人.(2010).粒子法とDEMの融合モデルによる被覆ブロック群の耐波安定性評価.土木学会論文集B.66(3): 258-267.[Link]
  • 後藤仁志,Khayyer Abbas,堀智恵実.(2009).粒子法における圧力擾乱低減のための新しい自由水面判定条件の提案.土木学会論文集B2(海岸工学).65(1): 21-25.[Link]
  • 後藤仁志,五十里洋行,谷岡弘邦,山本和久.(2008).粒子法による河川堤防裏法侵食の数値シミュレーション.水工学論文集.52: 979-984.
  • 安岡恒人,五十里洋行,後藤仁志.(2008).低天端護岸越波過程への数値シミュレーション適用事例.電力土木.333: 12-17.
  • 後藤仁志,五十里洋行,村元茂則,安岡恒人,高橋和秀.(2007).大型越波排水路付護岸前面のブロック移動限界予測へのMPS 法の応用.海岸工学論文集.54: 756-760.
  • 後藤仁志,五十里洋行,目見田哲,安岡恒人,望月貴文.(2006).低天端護岸上部の大型排水路への越波過程に対する粒子法の適用性.海岸工学論文集.53: 701-705.
  • 後藤仁志,五十里洋行,酒井哲郎,奥田一弘.(2006).粒子法とBoussinesqモデルのハイブリッド化に関する基礎的研究.水工学論文集.50: 1453-1458.
  • 後藤仁志,五十里洋行,酒井哲郎,谷岡弘邦.(2006).浸水時地下街階段登段者の脚部に作用する流体力評価に関する計算力学的アプローチ.水工学論文集.50: 865-870.
  • 後藤仁志,五十里洋行,西出俊亮,山田嘉晴,殿最浩司,目見田哲,望月貴文.(2005).粒子法型数値波動水槽における極値的越波再現のための補助造波境界の開発.海岸工学論文集.52: 681-685.
  • 後藤仁志,橋本麻末,酒井哲郎.(2005).落水CGの写実性のための粒子法SPS表情モデルの開発.土木学会論文集.782(II-70): 51-64.
  • 後藤仁志,橋本麻末,酒井哲郎.(2004).砕波CGの写実性向上のための粒子法SPS表情モデルの構築.海岸工学論文集.51: 116-120.
  • 後藤仁志,橋本麻末,五十里洋行,酒井哲郎.(2004).粒子法ポストプロセッシングによる落水表情の表現.水工学論文集.48: 643-648.
  • 後藤仁志,橋本麻末,五十里洋行,酒井哲郎.(2003).砕波表情表現のための粒子法ポストプロセッシングの提案.海岸工学論文集.50: 1421-1425.
  • 後藤仁志,五十里洋行,八木哲生,酒井哲郎.(2003).MPS法よる砕波解析のための自由水面境界条件の改良.海岸工学論文集.50: 21-25.
  • 後藤仁志,林 稔,目見田哲,酒井哲郎.(2003).粒子法による直立護岸前面砕波・越波の数値シミュレーション.土木学会論文集.726(II-62): 87-98.
  • 後藤仁志,酒井哲郎,林 稔,織田晃治.(2001).MPS法による津波の堤越流・氾濫過程の数値シミュレーション.海岸工学論文集.48: 141-145.
  • 後藤仁志,酒井哲郎,目見田 哲,沖 和哉,林 稔.(1999).粒子法による直立護岸前面の砕波・越波過程の数値解析.海岸工学論文集.46: 46-50.
  • 後藤仁志,酒井哲郎,沖 和哉.(1999).粒子法による透水斜面上の砕波・遡上過程の数値シミュレーション.海洋開発論文集.15: 315-320.
  • 後藤仁志,酒井哲郎,芝原知樹.(1999).急激な水面変動を伴う流速場のLagrange型数値解析.水工学論文集.43: 509-514.
  • 後藤仁志,酒井哲郎,沖 和哉,芝原知樹.(1998).粒子法による巻き波型砕波を伴う斜面遡上過程の数値シミュレーション.海岸工学論文集.45: 181-185.

混相流・剛体・弾性体

  • Harada, E., Tazaki, T. and Gotoh, H. (2024). Investigation of turbulent flow induced by particle sedimentation using RIM-PIV, J. Hydro-environment Res. 54: 13-25. [Link]
  • Tazaki, T., Harada, E. and Gotoh, H. (2022). Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme. Coastal Engineering. 175: Article 104146.[Link] 
  • Harada, E., Ikari, H., Tazaki, T. and Gotoh, H.(2021). Numerical simulation for coastal morphodynamics using DEM-MPS method. Applied Ocean Research. 117: Article 102905. [Link] 
  • Gotoh, H., Khayyer, A. and Shimizu, Y.(2021). Entirely Lagrangian Meshfree Computational Methods for Hydroelastic Fluid-Structure Interactions in Ocean Engineering – Reliability, Adaptivity and Generality. Applied Ocean Research. 115: Article 102822.   [Link]
  • Ikari, H., Yamano, T. and Gotoh, H.(2020). Multiphase particle method usingan elastoplastic solid phase model for the diffusion of dumped sandfrom a split hopper. Computers & Fluids. 208: 104639. [Link]
  • Harada, E., Ikari, H., Khayyer, A. and Gotoh, H.(2019). Numerical simulation for swash morphodynamics by DEM–MPS coupling model. Coastal Engineering Journal. 61(1): 2-14. [Link]
  • Tsuruta, N., Gotoh, H., Kojiro Suzuki,K., Ikari, H. and Shimosako, K. (2019). Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems. Coastal Engineering Journal. 61(1): 41-62. [Link]
  • Shimizu, Y., Gotoh, H. and Khayyer, A.(2018). An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept. Comput. Math. Appl. 76(5): 1108-1129. [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K., Falahaty, H. and Shao, S.(2018). Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity. Coastal Eng. 140: 1-22. [Link]
  • Ikari, H. and Gotoh, H.(2018). Numerical modeling of density currents using an Incompressible Smoothed Particle Hydrodynamics method. Computers and Fluids. 167(15): 372–383. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y.(2018). Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction. J. Hydrodynamics. 30(1): 49–61. [Link]
  • Falahaty, H., Khayyer, A. and Gotoh, H.(2018). Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction. J. Fluids and Structures. 81: 325–360. [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y., Falahaty, H. and Ikari, H.(2017). Development of a Fully Lagrangian SPH-based Computational Method for Incompressible Fluid-Elastic Structure Interactions. J. JSCE, Ser.B2, Coastal Engineering. 73(2): I_1039-I_1044. [LINK]
  • Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, K. and Shao, S.(2017). An Enhanced Particle Method for Simulation of Fluid Flow Interactions with Saturated Porous Media. J. JSCE, Ser.B2, Coastal Engineering. 73(2): I_841-I_846. [LINK]
  • Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y. and Nishijima, Y.(2017). Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming. Ocean Systems Eng. - An International Journal. 7(3): 299-318.   [Link]
  • Hwang, S. C., Park, J. C., Gotoh, H., Khayyer, A. and Kang, K. J.(2016). Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method. Ocean Engineering. 118: 227–241. [Link]
  • Ikari, H. and Gotoh, H.(2016). SPH-based simulation of granular collapse on an inclined bed. Mechanics Research Communications. 73: 12–18. [Link]
  • Khayyer, A., Falahaty, H., Gotoh, H. and Koga, T.(2016). An Enhanced Coupled Lagrangian Solver forIncompressible Fluid and Non-linear Elastic Structure Interactions. J. JSCE, Ser.B2, Coastal Engineering. 72: 1117-1122.
  • Khayyer, A., Gotoh, H., Park J.C., Hwang S.C. and Koga, T.(2015). An enhanced fully Lagrangian coupledMPS-based solver for fluid-structure interactions. J. JSCE, Ser.B2, Coastal Engineering.71: 883-888.
  • Gotoh, H., Sakai, T. & Hayashi,M. (2002). Lagrangian Model of Drift-Timbers Induced Flood by using Moving Particle Semi-Implicit Method. Jour. Hydroscience and Hydraulic Engrg., JSCE. 20(1): 95-102.
  • 五十里洋行,後藤仁志,樋口優一,長田直樹.(2020).多数粒子群の突入による水面波発生解析における固液間相互作用モデルの検討.土木学会論文集B2(海岸工学).76(2): I_25-I_30.[Link] 
  • 五十里洋行,後藤仁志,丹羽元樹,藤原聖史.(2020).海岸堤防裏法被覆ブロック孔部からのフィルター材の吸出しに関する数値解析.土木学会論文集B2(海岸工学).76(2): I_871-I_876.[Link]
  • 五⼗⾥洋⾏,後藤仁志,⼩林祐司,藤原聖史.(2019).三次元⾼精度粒⼦法による海岸堤防裏法肩被覆ブロック離脱過程の数値解析.⼟⽊学会論⽂集B2(海岸⼯学).75(2): I_853-I_858.
  • 清⽔ 裕真,Khayyer Abbas,後藤 仁志.(2019).陰的弾性構造解析⼿法を⽤いた完全Lagrange型流体-構造連成解析に関する基礎的研究.⼟⽊学会論⽂集B2(海岸⼯学).75(2): I_799-I_804.
  • 五十里洋行,原田英治,後藤仁志.(2018).津波越流時の海岸堤防裏法肩被覆ブロック離脱挙動の再現のための数値モデルの開発. 土木学会論文集B1(水工学).74(4): I_787-I_792.
  • 清⽔裕真,Khayyer Abbas,後藤仁志,永島健.(2018).SPS 乱流モデル付き⾼精度粒⼦法による油⽔混合過程の数値シミュレーション.⼟⽊学会論⽂集 B2(海岸⼯学).74(2): I_1129-I_1134.
  • 清⽔裕真,原⽥英治,五⼗⾥洋⾏,後藤仁志,伊賀修平.(2018).防波堤マウンド越流洗掘過程に関する⽔理実験及び数値解.⼟⽊学会論⽂集 B2(海岸⼯学).74(2): I_349-I_354.
  • 五⼗⾥洋⾏,後藤仁志,松島良太郎,丹⽻元樹.(2018).MLSによる応⼒補正を導⼊した弾塑性粒⼦法によるケーソン防波堤の津波越流洗掘解析.⼟⽊学会論⽂集B2(海岸⼯学).74(2): I_157-I_162.
  • 五⼗⾥洋⾏,後藤仁志,⼩林祐司,⼩⻄晃⼤.(2018).⼟運船による投下⼟砂の堆積形状予測に対する⾼精度固液混相型粒⼦法の適⽤性.⼟⽊学会論⽂集B2(海岸⼯学).74(2): I_43-I_48.
  • 五十里洋行,後藤仁志,江尻知幸,小西晃大.(2017).流体ー弾塑性体連成粒子法によるケーソン防波堤越流洗掘型津波被災過程の数値解析.土木学会論文B2(海岸工学).73(2): I_1033-I_1038.[LINK]
  • 五十里洋行,後藤仁志,鶴田修己,小林祐司.(2017).改良型非均一粒子径MPS法による消波護岸の越波シミュレーション.土木学会論文B2(海岸工学).73(2): I_19-I_24.[LINK]
  • 五十里洋行,後藤仁志,松島良太郎.(2016).粒子法型濁質輸送モデルによる濁水の水面突入・拡散過程の数値解析.土木学会論文B2(海岸工学).72(2): I_61-I_66.[Link]
  • 五十里洋行,後藤仁志,反保朋也,江尻知幸.(2015).微細土砂の巻き上げを考慮した粒子法鉛直噴流洗掘解析. 土木学会論文B2(海岸工学).71(2): I_19-I_24.[Link]
  • 五十里洋行,後藤仁志,吉永健二,反保朋也.(2014).MPS法高次Laplacianモデルの改良と鉛直噴流による洗掘過程の数値解析.土木学会論文集B2(海岸工学).70(2): I_36-I_40.[Link]
  • 鶴田修己,Khayyer Abbas,後藤仁志.(2013).高精度DEM-MPS法のための計算安定スキームの提案.土木学会論文集B2(海岸工学).69(2): I_1006-I_1010.[Link]
  • 後藤仁志,五十里洋行,原口和靖,中島寿,殿最浩司,石井倫生.(2013).混成防波堤の越流破壊解析と対策工検討のための粒子法型数値波動水槽の開発.土木学会論文集B2(海岸工学).69(2): I_881-I_885.[Link]
  • 五十里洋行,後藤仁志,新井智之.(2012).粒子法型非ニュートン流体モデルによる地滑り津波解析.土木学会論文集B2(海岸工学).68(2): 66-70.[Link]
  • 鶴田修己,後藤仁志,五十里洋行,原田英治.(2012).高精度3D-DEM-MPS法による多数粒子群非定常沈降過程の計算力学的検討.土木学会論文集B2(海岸工学).68(2): 851-855.[Link]
  • 後藤仁志,鶴田修己,原田英治,五十里洋行,久保田博貴.(2012).固液混相流解析のためのDEM-MPS連成手法の提案.土木学会論文集B2(海岸工学).68(2): 21-25.[Link]
  • 五十里洋行,後藤仁志,吉年英文.(2011).ケーソン式混成堤の大変形解析のための改良型弾塑性MPS法の基礎的検討.土木学会論文集B2(海岸工学).67(2): 731-735.[Link]
  • 後藤仁志,五十里洋行,松原隆之,伊藤孝.(2011).高精度粒子法に基づく固液二相流モデルによる山体崩壊津波の発生過程解析.土木学会論文集B2(海岸工学).67(2): 196-200.[Link]
  • 五十里洋行,後藤仁志,新井智之.(2010).海食崖の浸食過程の計算力学のための流体・弾塑性体ハイブリッドモデルの構築.土木学会論文集B2(海岸工学).66(1): 916-920.[Link]
  • 後藤仁志,五十里洋行,駒口友章,三島豊秋,吉年英文.(2010).粒子法による護岸背後地盤空洞形成過程の数値解析.土木学会論文集B2(海岸工学).66(1): 821-825.[Link]
  • 五十里洋行,後藤仁志,吉年英文.(2009).斜面崩壊誘発型津波の数値解析のための流体-弾塑性体ハイブリッド粒子法の開発.土木学会論文集B2(海岸工学).65(1): 46-50.[Link]
  • 後藤仁志,五十里洋行,殿最浩司,柴田卓詞,原田知弥,溝江敦基.(2009).粒子法によるエプロン上のコンテナ漂流挙動追跡のシミュレーション.土木学会論文集B2(海岸工学).65(1): 261-265.[Link]
  • 五十里洋行,後藤仁志.(2009).MPS法弾塑性解析による 粘性土河岸崩落過程の計算力学.水工学論文集.53: 1069-1074.
  • 後藤仁志,五十里洋行,安岡恒人,奥 謙介.(2008).被覆ブロック移動予測のためのDEM-MPSハイブリッドモデルの提案.海岸工学論文集.55: 836-840.
  • 五十里洋行,後藤仁志.(2008).粒子法による鎖係留浮標シミュレーションの開発.海岸工学論文集.55: 901-905.
  • 五十里洋行,後藤仁志.(2008).粒子法による水没柔軟植生の揺動現象の数値シミュレーション.水工学論文集.52: 973-978.
  • 五⼗⾥洋⾏,後藤仁志.(2007).津波氾濫による桁橋被災過程の数値シミュレーション.海岸⼯学論⽂集.54: 211-215.
  • 後藤仁志,五十里洋行,酒井哲郎,奥 謙介.(2007).山地橋梁の流木閉塞過程の3 次元シミュレーション.水工学論文集.51: 835-840.
  • 五十里洋行,後藤仁志,酒井哲郎.(2007).固液混相流型粒子法による排砂水路底面の摩耗過程のシミュレーション.水工学論文集.51: 853-858.
  • 五十里洋行,後藤仁志,角 哲也.(2006).自然調節型洪水吐きの流木による閉塞機構に関する計算水理学的研究.水工学論文集.50: 793-798.
  • 後藤仁志,橋本麻末,五十里洋行,酒井哲郎.(2005).気液二相流型粒子法に基づく落水グラフィックスの提案.水工学論文集.49: 763-768.
  • 五十里洋行,後藤仁志,酒井哲郎.(2004).気液二相流型粒子法による砕波過程の数値シミュレーション.海岸工学論文集.51: 111-115.
  • 五十里洋行,後藤仁志,酒井哲郎.(2004).気液二相流型粒子法における界面追跡の安定化.水工学論文集.48: 685-690.
  • 大谷英夫,後藤仁志,鷲見 崇,伊藤一教.(2004).ウォータージェットを用いた底泥下砂質土の揚砂メカニズムに関する研究.水工学論文集.48: 1189-1194.
  • 後藤仁志,林 稔,安藤 怜,鷲見 崇,酒井哲郎.(2003).砂礫混合層を伴う混相流解析のためのDEM-MPS法マルチスケールリンクの開発.海岸工学論文集.50: 26-30.
  • 後藤仁志,林 稔,安藤 怜,酒井哲郎.(2003).固液混相流解析のためのDEM-MPS法の構築.水工学論文集.47: 547-552.
  • 後藤仁志,林 稔,酒井哲郎.(2002).固液二相流型粒子法による大規模土砂崩壊に伴う水面波の発生過程の数値解析.土木学会論文集.719(II-61): 31-45.
  • 後藤仁志,林 稔,酒井哲郎,織田晃治,五十里洋行.(2002).遡上津波の戻り流れによる護岸法先洗掘のグリッドレス解析.海岸工学論文集.49: 46-50.
  • 後藤仁志,林 稔,織田晃治,酒井哲郎.(2002).越流水による河川堤防侵食過程のグリッドレス解析.水工学論文集.46: 439-444.
  • 後藤仁志,酒井哲郎,林 稔,八木哲生.(2002).MPS法による甌穴形成過程の数値解析.水工学論文集.46: 767-772.
  • 後藤仁志,林 稔,安藤 怜,酒井哲郎.(2002).暗渠排水路の氾濫過程のLagrange解析.水工学論文集.46: 845-850.
  • 後藤仁志,林 稔,酒井哲郎.(2001).固液二相流型MPS法による波・底泥相互干渉の数値解析.海岸工学論文集.48: 1-5.
  • 後藤仁志,酒井哲郎,林 稔,安藤 怜.(2001).構造物下面への接岸浮遊物の潜込過程のLagrange型シミュレーション.海岸工学論文集.48: 816-820.
  • 後藤仁志,酒井哲郎,林 稔.(2001).粒子法による流木群堰止め過程のLagrange解析.水工学論文集.45: 919-924.
  • 後藤仁志,酒井哲郎,林 稔.(2000).大規模斜面崩壊による水面波の発生過程のグリッドレス解析.海岸工学論文集.47: 56-60.
  • 後藤仁志,Jorgen Fredsoe.(1999).Lagrange型固液二相流モデルによる海洋投棄微細土砂の拡散過程の数値解析.海岸工学論文集.46: 986-990.

高精度粒子法(CMPS/CISPH)

  • Gotoh, T., Khayyer, A. and Gotoh, H. (2024). Enhanced schemes for resolution of the continuity equation in projection-based SPH. Engineering Analysis with Boundary Elements. 166: 105848.[Link] 
  • Harada, E., Tazaki, T. and Gotoh, H. (2024). Investigation of turbulent flow induced by particle sedimentation using RIM-PIV, J. Hydro-environment Res. 54: 13-25. [Link]
  • Khayyer, A., Gotoh, H. Shimizu, Y. and Gotoh, T. (2023). An improved Riemann SPH-Hamiltonian SPH coupled solver for hydroelastic fluid–structure interactions. Engineering Analysis with Boundary Elements. 158: 332-355.[Link] 
  • Tsuruta, N., Khayyer, A. and Gotoh, H. (2023). Development of Advective Dynamic Stabilization scheme for ISPH simulations of free- surface fluid flows. Computers & Fluids. 266:106048.[Link] 
  • Khayyer, A., Shimizu, Y., Gotoh, T. and Gotoh, H. (2023). Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows. Applied Mathematical Modelling. 116: 84-121. [Link]  
  • Shimizu, Y., Gotoh, H., Khayyer, A. and Kita, K. (2022). Fundamental Investigation on the Applicability of a Higher-Order Consistent ISPH Method. International Journal of Offshore and Polar Engineering. 32(3): 275-284. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An implicit SPH-based structure model for accurate Fluid–Structure Interaction simulations with hourglass control scheme. European Journal of Mechanics-B/Fluids. 96: 122-145. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms. Engineering Analysis with Boundary Elements. 137:160-181. [Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity. Ocean Systems Engineering. 12(1): 63-86.[Link] 
  • Shimizu, Y., Khayyer, A. and Gotoh, H. (2022). An implicit SPH-based structure model for accurate Fluid–Structure Interaction simulations with implicit hourglass control scheme. European Journal of Mechanics / B Fluids. 96: 122-145.[Link] 
  • Khayyer, A., Gotoh, H. and Shimizu, Y. (2022). On systematic development of FSI solvers in the context of particle methods. Journal of Hydrodynamics. 34: 395-407.[Link] 
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Nishijima, Y.(2021). A 3D Lagrangian meshfree projection-based solver for hydroelastic Fluid-Structure Interactions. Jour. Fluid and Structures. 105: Article 103342. [Link] 
  • Khayyer, A., Shimizu, Y., Gotoh, H. and Hattori, S.(2021). Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering. Ocean Engineering. 226: Article 108652. [Link] 
  • You, Y., Khayyer, A., Zheng, X., Gotoh, H. and Ma, Q.(2021). Enhancement of δ-SPH for ocean engineering applications through incorporation of a background mesh scheme. Applied Ocean Research. 110: Article 102508. [Link] 
  • Tsuruta, N., Khayyer, A., Gotoh, H. and Suzuki, K.(2021). Development of Wavy Interface model for numerical wave flumes corresponding to particle methods. Coastal Engineering. 165: Article 103861. [Link] 
  • Khayyer, A., Shimizu, Y., Gotoh, H. and Nagashima, K.(2021). A coupled Incompressible SPH–Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Applied Mathematical Modelling. 94: 242-271. [Link] 
  • Shimizu, Y., Khayyer, A., Gotoh, H. and Nagashima, K.(2020). An enhanced multiphase ISPH-based method for accurate modeling of oil spill. Coastal Engineering Journal. 62(4): 625–646. [Link] 
  • Wang, L., Khayyer, A., Gotoh, H., Jiang, Q. and Zhang, C.(2019). Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme. Applied Ocean Res. 86: 320-339. [Link]
  • Tsuruta, N., Gotoh, H., Suzuki,K., Ikari, H. and Shimosako, K. (2019). Development of PARISPHERE as the particle-based numerical wave flume for coastal engineering problems. Coastal Engineering Journal. 61(1): 41-62. [Link]
  • Khayyer, A., Tsuruta, N., Shimizu, Y. and Gotoh, H.(2019). Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Applied Ocean Res. 82: 397-414. [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y.(2019). A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields. Computers & Fluids. 179: 356-371. [Link]
  • Khayyer, A., Gotoh, H., Falahaty, H. and Shimizu, Y.(2018). An Enhanced ISPH-SPH Coupled Method for Simulation of Incompressible Fluid-Elastic Structure Interactions. Comput. Phys. Commun. 232: 139-164. [Link]
  • Gotoh, H. and Khayyer, A.(2018). On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Eng. J. 60(1): 79-103. [Link]
  • Khayyer, A., Gotoh, H. and Shimizu, Y.(2017). Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J. Compt. Phys. 332(1): 236-256. [Link]
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Gotoh, K.(2017). On enhancement of energy conservation properties of projection-based particle methods. European Journal of Mechanics - B/Fluids. 66: 20-37.  [Link]
  • Gotoh, H. and Khayyer, A.(2016). Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. Journal of Ocean Engineering and Marine Energy.  2(3): 251-278. [Link]
  • Khayyer, A. and Gotoh, H.(2016). A Multiphase Compressible-Incompressible Particle Method for Water Slamming. International Journal of Offshore and Polar Engineering. 26(1): 20-25. [Link]
  • Tsuruta, N., Khayyer, A. and Gotoh, H.(2015). Space potential particles to enhance the stability of projection-based particle methods. International Journal of Computational Fluid Dynamics. 29(1): 100-119. [Link]
  • Ikari, H., Khayyer, A. and Gotoh, H.(2015). Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering. J. Ocean Eng. Mar. Energy. 1(4): 361-376. [Link]
  • Hwang, S.C., Khayyer, A., Gotoh, H. and Park, J.C.(2014). Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems. J. Fluids and Structures. 50: 497-511. [Link]
  • Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T. & Shimosako, K.(2014). On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Res. 46: 104–115. [Link]
  • Khayyer, A., Gotoh, H. and Tsuruta, N.(2014). A New Surface Tension Model for Particle Methods with Enhanced Splash Computation, Journal of Japan Society of Civil Engineers. Ser. B2 (Coastal Engineering). 70(2): I_26-I_30. [Link]
  • Tsuruta, N., Khayyer, A. & Gotoh, H.(2013). A Short Note on Dynamic Stabilization of Moving Particle Semi-implicit Method. Computers & Fluids. 82: 158–164. [Link]
  • Khayyer, A. & Gotoh, H.(2013). Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. Journal of Computational Physics. 242: 211–233. [Link]
  • Khayyer, A. & Gotoh, H.(2012). A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations. Applied Ocean Res. 37: 120-126. [Link]
  • Khayyer, A. & Gotoh, H.(2011). Enhancement of stability and accuracy of the moving particle semi-implicit method. Journal of Computational Physics. 230(8): 3093-3118. [Link]
  • Khayyer, A. & Gotoh, H.(2010). On particle-based simulation of a dam break over a wet bed. Jour. Hydraulic Res., IAHR. 48(2): 238-249. [Link]
  • Khayyer, A. & Gotoh, H.(2010). A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method. Applied Ocean Res. 32: 124-131. [Link]
  • Khayyer, A. & Gotoh, H.(2009). Wave Impact Pressure Calculations by Improved SPH Methods. International Journal of Offshore and Polar Engineering. 19(4): 300-307. [Link]
  • Gotoh, H.(2009). Lagrangian Particle Method as Advanced Technology for Numerical Wave Flume. International Journal of Offshore and Polar Engineering. 19(3): 161-167. [Link]
  • Khayyer, A., Gotoh, H. & Shao, S.(2009). Enhanced predictions of wave impact pressure by improved Incompressible SPH methods. Applied Ocean Res. 31: 111-131. [Link]
  • Khayyer, A. & Gotoh, H.(2009). Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Eng. 56: 419-440. [Link]
  • Khayyer, A. & Gotoh, H.(2008). Development of CMPS Method for Accurate Wave-Surface Tracking in Breaking Waves. Coastal Eng. Jour. 50(2): 179-207. [Link]
  • Khayyer, A., Gotoh, H. & Shao, S.(2008). Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Eng. 55: 236-250. [Link]
  • Khayyer, A. & Gotoh, H.(2008). Refined Simulation of Solitary Plunging Breaker by CMPS Method. Annual Jour. of Hydraulic Eng., JSCE. 52: 121-126.
  • 五十里洋行,後藤仁志,脇嶋可成.(2022).MPS法におけるエネルギー保存性の改善と不規則波伝播計算への適用性.土木学会論文集B2(海岸工学).78(2): I_43-I_48.[Link] 
  • 清水 裕真, 後藤 仁志,Khayyer Abbas.(2020).完全Lagrange型流体-構造連成解析のための改良型陰的弾性体モデルの構築.土木学会論文集B2(海岸工学).76(2): I_31-I_36. [Link] 
  • 後藤仁志,鈴木高二朗,五十里洋行,有川太郎,Abbas KHAYYER,鶴田修己.(2017).高精度粒子法を用いた高機能型数値波動水槽の開発.土木学会論文B2(海岸工学).73(2): I_25-I_30.[LINK]
  • 後藤仁志,五十里洋行,殿最浩司,伊藤忠男,菅原康之.(2016).流起式防波堤のベルト張力推定に関する高精度粒子法の適用性.土木学会論文B2(海岸工学).72(2): I_1093-I_1098.[Link]
  • 後藤仁志,Abbas KHAYYER,清水裕真.(2016).進行波の高精度計算のためのISPH法のエネルギー保存性の改善.土木学会論文B2(海岸工学).72(2): I_55-I_60.[Link]
  • 鶴田修己,後藤仁志,鈴木高二朗,Abbas KHAYYER,下迫健一郎,五十里洋行.(2016).高精度自由表面境界モデルを用いた粒子法のスロッシング現象への適用.土木学会論文B2(海岸工学).72(2): I_49-I_54.[Link]
  • 後藤仁志,五十里洋行,殿最浩司,菅野高弘,東良慶,伊藤忠男,菅原康之.(2015).高精度粒子法による流起式防波堤の数値解析.土木学会論文B2(海岸工学).71(2): I_1051-I_1056.[Link]
  • 鶴田修己,後藤仁志,鈴木高二朗,下迫健一郎,Abbas KHAYYER,五十里洋行.(2015).高精度粒子法を用いた数値波動水槽のための開放境界条件モデルの構築.土木学会論文B2(海岸工学).71(2): I_13-I_18.[Link]
  • 後藤仁志,KHAYYER Abbas,五十里洋行,清水裕真.(2015).エネルギー保存性の高い粒子法による水面波の伝播計算.土木学会論文B2(海岸工学).71(2): I_25-I_30.[Link]
  • 大家隆行,WANG Dong,高谷岳志,荒木和博,LI Shaowu,後藤仁志,有川太郎.(2015).ISPH法による越流に伴う防潮堤背後の洗掘計算.土木学会論文B2(海岸工学).71(2): I_253-I_258.[Link]
  • 後藤仁志,有川太郎,KHAYYER Abbas,五十里洋行,下迫健一郎,荒木和博,上原靖.(2014).高精度ISPH法による直立壁面上の砕波の数値解析.土木学会論文集B2(海岸工学).70(2): I_21-I_25.[Link]
  • 堀智恵実,後藤仁志,五十里洋行,Abbas Khayyer.(2011).高精度粒子法へのSPS乱流モデルの導入による砕波帯内乱流場の解析.土木学会論文集B2(海岸工学).67(2): 26-30.[Link]
  • 後藤仁志,五十里洋行,松原隆之,伊藤孝.(2011).高精度粒子法に基づく固液二相流モデルによる山体崩壊津波の発生過程解析.土木学会論文集B2(海岸工学).67(2): 196-200.[Link]
  • 後藤仁志,Abbas Khayyer,五十里洋行,堀智恵実,市川陽一.(2010).高次Laplacianモデルを用いた高精度粒子法のスロッシング現象への適用性.土木学会論文集B2(海岸工学).66(1): 51-55.[Link]
  • Khayyer Abbas,後藤仁志,堀智恵実.(2009).高精度粒子法による複雑砕波過程の再現性の向上.土木学会論文集B2(海岸工学).65(1): 31-35.[Link]
  • Khayyer Abbas,後藤仁志.(2008).粒子法における圧力擾乱低減のためのCMPS-HS法の提案.海岸工学論文集.55: 16-20.
  • 五十里洋行,後藤仁志,酒井哲郎,谷岡弘邦.(2005).衝撃波圧推定への疑似圧縮型粒子法の適用性.海岸工学論文集.52: 731-73

乱流モデル

  • Shao, S. & Gotoh, H.(2005). Turbulence Particle Models for Tracking Free Surfaces. Jour. Hydraulic Res., IAHR. 43(3): 276-289. [Link]
  • Shao, S. & Gotoh, H.(2004).Simulating Coupled Motion of Progressive Wave and Floating Curtain Wall by SPH-LES Model. Coastal Eng. Jour. 46(2): 171-202. [Link]
  • Gotoh, H., Shao, S. & Memita, T.(2004). SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater. Coastal Eng. Jour. 46(1): 39-63. [Link]
  • Gotoh, H., Shao, S. & Memita, T.(2003). SPH-LES Model for Wave Dissipation using a Curtain Wall. Annual Jour. of Hydraulic Eng., JSCE. 47: 397-402.
  • Gotoh, H., Shibahara, T. & Sakai, T.(2001). Sub-Particle-Scale Turbulence Model for the MPS Method - Lagrangian Flow Model for Hydraulic Engineering -. Computational Fluid Dynamics Jour. 9(4): 339-347. 
  • 後藤仁志,KHAYYER Abbas,鶴田修己,山本浩輔.(2013).SPS乱流モデル付き高精度粒子法による砕波下の乱流場の数値解析.土木学会論文集B2(海岸工学).69(2): I_16-I_20.[Link]
  • 堀智恵実,後藤仁志,五十里洋行,Abbas Khayyer.(2011).高精度粒子法へのSPS乱流モデルの導入による砕波帯内乱流場の解析.土木学会論文集B2(海岸工学).67(2): 26-30.[Link]
  • 後藤仁志,林 稔,織田晃治,酒井哲郎.(2002).SPS乱流モデル付き拡張MPS法による砕波過程の数値解析.海岸工学論文集.49: 31-35.
  • 後藤仁志,酒井哲郎,芝原知樹.(2000).SPS乱流モデルの導入による新しい粒子法の展開.水工学論文集.44: 575-580.

3次元化・並列化

  • Hori, C., Gotoh, H., Ikari, H. & Khayyer, A.(2011). GPU-acceleration for Moving Particle Semi-Implicit Method. Computers and Fluids. 51(1): 174-183. [Link]
  • 堀智恵実,後藤仁志,五十里洋行,Abbas Khayyer.(2010).数値波動水槽のための3D-MPS法のGPUによる高速化.土木学会論文集B2(海岸工学).66(1): 56-60.[Link]
  • 後藤仁志,堀智恵実,五十里洋行,Khayyer Abbas.(2010).GPUによる粒子法半陰解法アルゴリズムの高速化.土木学会論文集B.66(2): 217-222.[Link]
  • 後藤仁志,Khayyer Abbas,五十里洋行,堀智恵実.(2009).領域分割の最適化による3次元CMPS法の並列計算効率の改善.土木学会論文集B2(海岸工学).65(1): 41-45.[Link]
  • 五十里洋行,後藤仁志,酒井哲郎,奥田一弘.(2006).三次元数値波動水槽のための粒子法とBoussinesqモデルとのハイブリッド化.海岸工学論文集.53: 11-15.
  • 後藤仁志,五十里洋行,酒井哲郎,奥 謙介.(2006).浮体群を伴う津波氾濫流の3Dシミュレーション.海岸工学論文集.53: 196-200.
  • 後藤仁志,五十里洋行,酒井哲郎,望月貴文.(2006).3D-MPS法による数値魚道の構築に関する基礎的検討.水工学論文集.50: 853-858.
  • 後藤仁志,五十里洋行,酒井哲郎.(2005).粒子法による三次元数値波動水槽の開発.海岸工学論文集.52: 26-30.
  • 五十里洋行,後藤仁志,酒井哲郎.(2005).粒子法の3次元化による多段型落差工の水理シミュレーション.水工学論文集.49: 811-816.

Page Top


数値流砂水理学
主要文献

  • Khayyer, A., Shimizu, Y., Lee, C. H., Gil, A., Gotoh, H. and Bonet, J. (2023). An improved Updated Lagrangian SPH method for structural modelling. Comput. Particle Mech. Published online: 27 Nov. 2023 [Link] 
  • Tazaki, T., Harada, E., Gotoh, H. (2023). Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme. Coastal Engineering Journal. 65(2): 347-368. [Link]
  • Ikari, H., Gotoh, H. (2023). Fully implicit discrete element method for granular column collapse. Comp. Part. Mech. 10: 261–271.[Link]
  • Tazaki, T., Harada, E. and Gotoh, H. (2022). Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme. Coastal Engineering. 175: Article 104146.[Link]
  • Harada, E., Ikari, H., Tazaki, T. and Gotoh, H.(2021). Numerical simulation for coastal morphodynamics using DEM-MPS method. Applied Ocean Research. 117: Article 102905. [Link] 
  • Tazaki, T., Harada, E. and Gotoh, H.(2021). Vertical sorting process in oscillating water tank using DEM-MPS coupling model. Coastal Engineering. 165: Article 103765. [Link] 
  • Harada, E., Tazaki, T. and Gotoh, H.(2020). Numerical investigation of ripple in oscillating water tank by DEM-MPS coupled solid-liquid two-phase flow model. Journal of Hydro-environment Research. 32: 26–47. [Link] 
  • Harada, E., Ikari, H., Khayyer, A. and Gotoh, H.(2019). Numerical simulation for swash morphodynamics by DEM–MPS coupling model. Coastal Engineering Journal. 61(1): 2-14. [Link]
  • Harada, E., Gotoh, H., Ikari, H., Khayyer, A.(2019). Numerical simulation for sediment transport using MPS-DEM coupling model. Adv. Water Res. 129: 354-364. [Link]
  • Harada, E., Ikari, H., Shimizu, Y., Khayyer, A. and Gotoh, H.(2018). Numerical Investigation of the Morphological Dynamics of a Step-and-Pool Riverbed Using DEM-MPS. J. Hydraul. Eng. 144(1): 04017058-1-10. [Link]
  • Harada, E., Gotoh, H. & Tsuruta, N.(2015). Vertical sorting process under oscillatory sheet flow condition by resolved discrete particle model. Journal of Hydraulic Research. 53(3): 332-350. [Link]
  • Harada, E., Tsuruta, N. & Gotoh, H.(2013). Two-phase flow LES of the sedimentation process of a particle cloud. Journal of Hydraulic Research. 51(2): 1-9. [Link]
  • Hajivalie, F., Yeganeh, A., Houshanghi, H. & Gotoh, H.(2012). Euler-Lagrange model for scour in front of vertical breakwater. Applied Ocean Res. 34: 96-106. [Link]
  • Harada, E., Gotoh, H. & Tsuruta, N.(2011). Numerical Simulation for Sedimentation Process of Blocks on a Sea Bed by High-Resolution Multi-Phase Model. Coastal Eng. Jour. 53(4): 343-364. [Link]
  • Yeganeh, A., Shabani, B., Gotoh, H. & Wang, S. S. Y.(2009). A Three-Dimensional Distinct Element Model for Bed-Load Transport. Jour. Hydraulic Res., IAHR. 47(2): 203-212. [Link]
  • Harada, E. & Gotoh, H.(2008). Computational Mechanics of Vertical Sorting of Sediment in Sheet Flow Regime by 3D Granular Material Model. Coastal Eng. Jour. 50(1): 1-27. [Link]
  • Yeganeh, A., Gotoh, H. & Sakai, T.(2000). Applicability of Euler-Lagrange coupling multiphase-flow model to bed-load transport under a high bottom shear. Jour. Hydraulic Res., IAHR. 38(5): 389-398. [Link]
  • Gotoh, H. & Sakai, T.(1997). Numerical Simulation of Sheetflow as Granular Material.  Jour. of Waterway, Port, Coastal, and Ocean Engrg., ASCE. 123(6): 329-336. [Link]
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.(1995). Refined PSI-cell model for interphase and interparticle momentum transfer in bed-load layer.  Jour. Hydroscience and Hydraulic Engrg., JSCE. 13(1): 13-24.
  • 田﨑拓海,原田英治,後藤仁志.(2022).体積保存型のDEM-MPS法による遡上波解析に基づく前浜の漂砂機構の計算力学.土木学会論文集B2(海岸工学).78(2): I_433-I_438.[Link]
  • 原田英治,田﨑拓海,後藤仁志,河野眞.(2020).3次元DEM-MPS法による初期ripple形成過程の計算力学的検討.土木学会論文集B2(海岸工学).76(2): I_475-I_480.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2010).固液混相乱流モデルの捨石群の沈降・堆積過程計算への適用例.土木学会論文集B.66(1): 25-34.[Link]
  • 原田英治,後藤仁志.(2006).三次元数値移動床による混合粒径シートフロー漂砂の分級過程の解析.土木学会論文集B.62(1): 128-138.
  • 後藤仁志,原田英治,酒井哲郎.(2001).混合粒径シートフロー漂砂の鉛直分級過程.土木学会論文集.691(II-57): 133-142.
  • 後藤仁志,酒井哲郎.(1995).表層せん断を受ける砂層の動的挙動の数値解析.土木学会論文集.521(II-32): 101-112.
  • 後藤仁志,辻本哲郎,中川博次.(1994).掃流粒子群の流動過程に関する数値シミュレーション.土木学会論文集.485(II-26): 75-83.
  • 後藤仁志,辻本哲郎,中川博次.(1994).流体・粒子相互作用系としての掃流層の数値解析.土木学会論文集.485(II-26): 11-19.
  • 後藤仁志,辻本哲郎,中川博次.(1993).振動流・一方向流共存場における掃流砂量.土木学会論文集.473(II-24): 65-72.

単一粒子追跡

  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.(1995). Formula of sediment discharge in oscillation-current coexisting flow.  Jour. Hydroscience and Hydraulic Engrg., JSCE. 13(1): 25-34.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.(1993). Dislodgment process of sediment particle on bed at an unsteady flow.  Jour. Hydroscience and Hydraulic Engrg., JSCE. 11(1): 21-30.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.(1993). Numerical simulation of bed-load transport in unsteady uniform flow.  Jour. Hydroscience and Hydraulic Engrg., JSCE. 11(1): 31-40.
  • Nakagawa, H., Murakami, S. & Gotoh, H.(1992). Structure of flow and dispersion process of suspended particle over two-dimensional dunes. Jour. Hydroscience and Hydraulic Engrg., JSCE. 9(2): 17-26.
  • Nakagawa, H., Tsujimoto, T., Murakami, S. & Gotoh, H.(1990). Transition mechanism from saltation to suspension in bed-material-load transport. Jour. Hydroscience and Hydraulic Engrg., JSCE. 8(1): 41-54.
  • 後藤仁志,Abbas Khayyer,五十里洋行,堀智恵実,市川陽一.(2010).高次Laplacianモデルを用いた高精度粒子法のスロッシング現象への適用性.土木学会論文集B2(海岸工学).66(1): 51-55.[Link]
  • 後藤仁志,酒井哲郎,松原隆之.(1999).DSMC法による非対称砂漣上の浮遊砂拡散過程の数値シミュレーション.海岸工学論文集.46: 536-540.
  • 酒井哲郎,後藤仁志,松原隆之,高橋智洋.(1998).非対称砂漣上の浮遊過程における一方向流と水圧変動の役割.海岸工学論文集.45: 491-495.
  • 酒井哲郎,後藤仁志,松原隆之.(1997).振動流・水圧変動共存場における砂漣上の浮遊過程.海岸工学論文集.44: 491-495.
  • 酒井哲郎,後藤仁志,Abbas Yeganeh-Bakhtiary.(1997).シートフローへの遷移領域における砂粒子運動と流れ場の相互作用に関する基礎的実験.水工学論文集.41: 825-830.
  • 後藤仁志,酒井哲郎,柏村真直,田中博章.(1995).被圧海底地盤内の間隙水圧分布を考慮した底質の移動限界.海岸工学論文集.42: 496-500.
  • 後藤仁志,辻本哲郎,中川博次.(1995).浮遊砂の動的応答特性に基づく浮遊時間スケールの推定.土木学会論文集.515(II-31): 67-76.
  • 中川博次,辻本哲郎,後藤仁志,井上裕介.(1994).乱れの時系列特性を考慮した浮遊過程の確率論的解析.水工学論文集.38: 591-596.
  • 後藤仁志,辻本哲郎,中川博次.(1994).水流の乱れに対する浮遊粒子の動的応答特性.水工学論文集.38: 585-590.
  • 後藤仁志,渡辺幹広,辻本哲郎,中川博次.(1993).底質の幾何的配列が掃流運動に及ぼす影響.海岸工学論文集.40: 296-300.
  • 後藤仁志,辻本哲郎,中川博次.(1993).振動流・一方向流共存場における掃流砂量.土木学会論文集.473(II-24): 65-72.
  • 後藤仁志,辻本哲郎,中川博次.(1993).砂漣床上の振動流・一方向流共存場における浮遊砂の拡散過程.土木学会論文集.473(II-24): 83-91.
  • 中川博次,辻本哲郎,後藤仁志.(1992).流砂の時間軸上の非平衡性を考慮した漂砂量式.海岸工学論文集.39: 311-315.
  • 辻本哲郎,後藤仁志,中川博次.(1992).時間軸上に展開された非平衡流砂過程のモデル化.土木学会論文集.443(II-18): 37-46.
  • 中川博次,辻本哲郎,後藤仁志.(1991).非定常性を考慮した砂粒子の離脱過程のモデル化.水工学論文集.35: 429-434.
  • 中川博次,辻本哲郎,村上正吾,後藤仁志.(1990).掃流から浮遊への遷移の出現機構とその流砂過程における役割.土木学会論文集.417(II-13): 149-156.
  • 中川博次,村上正吾,後藤仁志.(1990).河床波上の流れの構造と浮遊粒子の拡散過程について.水工学論文集.34: 523-528.

混相流モデル

  • Khayyer, A., Shimizu, Y., Lee, C. H., Gil, A., Gotoh, H. and Bonet, J. (2023). An improved Updated Lagrangian SPH method for structural modelling. Comput. Particle Mech. Published online: 27 Nov. 2023 [Link] 
  • Tazaki, T., Harada, E., Gotoh, H. (2023). Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme. Coastal Engineering Journal. 65(2): 347-368. [Link]  
  • Tazaki, T., Harada, E. and Gotoh, H. (2022). Numerical investigation of sediment transport mechanism under breaking waves by DEM-MPS coupling scheme. Coastal Engineering.175: Article 104146.[Link] 
  • Harada, E., Ikari, H., Tazaki, T. and Gotoh, H.(2021). Numerical simulation for coastal morphodynamics using DEM-MPS method. Applied Ocean Research. 117: Article 102905. [Link] 
  • Tazaki, T., Harada, E. and Gotoh, H.(2021). Vertical sorting process in oscillating water tank using DEM-MPS coupling model. Coastal Engineering. 165: Article 103765. [Link] 
  • Harada, E., Tazaki, T. and Gotoh, H.(2020). Numerical investigation of ripple in oscillating water tank by DEM-MPS coupled solid-liquid two-phase flow model. Journal of Hydro-environment Research. 32: 26–47. [Link] 
  • Harada, E., Ikari, H., Khayyer, A. and Gotoh, H.(2019). Numerical simulation for swash morphodynamics by DEM–MPS coupling model. Coastal Engineering Journal. 61(1): 2-14. [Link]
  • Harada, E., Gotoh, H., Ikari, H., Khayyer, A.(2019). Numerical simulation for sediment transport using MPS-DEM coupling model. Adv. Water Res. 129: 354-364. [Link]
  • Harada, E., Ikari, H., Shimizu, Y., Khayyer, A. and Gotoh, H.(2018). Numerical Investigation of the Morphological Dynamics of a Step-and-Pool Riverbed Using DEM-MPS. J. Hydraul. Eng. 144(1): 04017058-1-10. [Link]
  • Harada, E., Gotoh, H. & Tsuruta, N.(2015). Vertical sorting process under oscillatory sheet flow condition by resolved discrete particle model. Journal of Hydraulic Research. 53(3): 332-350. [Link]
  • Harada, E., Tsuruta, N. & Gotoh, H.(2013). Two-phase flow LES of the sedimentation process of a particle cloud. Journal of Hydraulic Research. 51(2): 1-9. [Link]
  • Harada, E., Gotoh, H. & Tsuruta, N.(2011). Numerical Simulation for Sedimentation Process of Blocks on a Sea Bed by High-Resolution Multi-Phase Model. Coastal Eng. Jour. 53(4): 343-364. [Link]
  • Yeganeh, A., Gotoh, H. & Sakai, T.(2000). Applicability of Euler-Lagrange coupling multiphase-flow model to bed-load transport under a high bottom shear. Jour. Hydraulic Res., IAHR. 38(5): 389-398. [Link]
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.(1995). Refined PSI-cell model for interphase and interparticle momentum transfer in bed-load layer.  Jour. Hydroscience and Hydraulic Engrg., JSCE. 13(1): 13-24.
  • 田﨑拓海,原田英治,後藤仁志.体積保存型のDEM-MPS法による遡上波解析に基づく前浜の漂砂機構の計算力学.土木学会論文集B2(海岸工学).78(2): I_433-I_438.[Link]
  • 原田英治,田﨑拓海,後藤仁志,河野眞.(2020).3次元DEM-MPS法による初期ripple形成過程の計算力学的検討.土木学会論文集B2(海岸工学). 76(2): I_475-I_480.[Link]
  • 原⽥英治,五⼗⾥洋⾏,後藤仁志,居村光孝,清⽔裕真.(2018).DEM-MPS法による砕波帯漂砂過程の3次元計算.⼟⽊学会論⽂集B2(海岸⼯学).74(2): l_751-l_756.
  • 清⽔裕真,原⽥英治,五⼗⾥洋⾏,後藤仁志,伊賀修平.(2018).防波堤マウンド越流洗掘過程に関する⽔理実験及び数値解析.⼟⽊学会論⽂集B2(海岸⼯学).74(2): l_349-l_354.
  • 原田英治,五十里洋行,後藤仁志,清水裕真,居村光孝,松本昌展.(2017).高精度MPS法とDEMによるサンドリップル形成過程の数値シミュレーション.土木学会論文B2(海岸工学).73(2): I_511-I_516.[LINK]
  • 原田英治,鶴田修己,後藤仁志.(2016).水理実験および粒子流LESによるシートフロー漂砂の内部構造の検討.土木学会論文B2(海岸工学).72(2): I_589-I_594.[Link]
  • 原田英治,鶴田修己,後藤仁志.(2015).粒子流LESによる振動流下シートフロー漂砂の摩擦係数の検討.土木学会論文B2(海岸工学).71(2): I_493-I_498.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2013).粒子流LESによる振動流下シートフロー層の応力構造の検討.土木学会論文集B2(海岸工学).69(2): I_556-I_560.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2012).粒子流LESによる振動流下シートフロー層のレオロジーの位相特性の検討.土木学会論文集B2(海岸工学).68(2): 501-505.[Link]
  • 鶴田修己,原田英治,後藤仁志.(2011).粒子流LESによる粒子群の非定常沈降過程の解析.土木学会論文集B2(海岸工学).67(2): 736-740.[Link]
  • 原田英治,鶴田修己,後藤仁志.(2011).混合粒径シートフロー漂砂の鉛直分級過程の固液混相型LES.土木学会論文集B2(海岸工学).67(2): 471-475.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2010).ブロック群沈降・堆積予測のための3次元固液混相乱流モデルの構築.土木学会論文集B2(海岸工学).66(1): 766-770.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2010).3次元固液混相流モデルによるシートフロー漂砂の鉛直分級過程の解析.土木学会論文集B2(海岸工学).66(1): 411-415.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2010).固液混相乱流モデルの捨石群の沈降・堆積過程計算への適用例.土木学会論文集B.66(1): 25-34.[Link]
  • 原田英治,後藤仁志.(2009).シートフロー漂砂における鉛直分級過程の高解像度計算.土木学会論文集B2(海岸工学).65(1): 516-520.[Link]
  • 原田英治,後藤仁志,鶴田修己.(2009).固液混相乱流モデルによるブロック群の沈降・堆積過程の数値シミュレーション.土木学会論文集B2(海岸工学).65(1): 896-900.[Link]
  • 原田英治,後藤仁志.(2008).高解像度固液混相流モデルを用いた水中投入ブロック群沈降・堆積過程の数値シミュレーション.海岸工学論文集.55: 961-965.
  • 原田英治,後藤仁志.(2008).個別要素法を用いた固液混相流モデルによる粒子群沈降過程の高解像度計算.水工学論文集.52: 967-972.
  • 原田英治,後藤仁志.(2007).固液混相乱流モデルによるシートフロー漂砂の鉛直分級過程への計算力学的アプローチ.海岸工学論文集.54: 476-480.
  • 原田英治,青木伸一,後藤仁志,細田 尚.(2006).水中投入粒子群挙動および誘起流動過程.海岸工学論文集.53: 861-865.
  • 原田英治,細田 尚,後藤仁志,永田祥久.(2005).固液混相流モデルによる高濃度掃流粒子層発達過程の数値解析.水工学論文集.49: 745-750.
  • 原田英治,細田 尚,後藤仁志.(2004).Euler-Lagrangeカップリングモデルによる捨石堰の崩壊過程の計算力学的研究.土木学会論文集.775(II-69): 45-54.
  • 原田英治,後藤仁志,酒井哲郎.(2000).固気混相流型粒状体モデルによる飛砂の非定常発達過程の数値解析.海岸工学論文集.47: 541-545.
  • 後藤仁志,Yeganeh, A.,酒井哲郎.(2000).混相流モデルと個別要素法の融合による高濃度掃流層の数値解析.土木学会論文集.649(II-51): 17-26.
  • 後藤仁志,酒井哲郎,原田英治.(1999).固気混相流モデルと粒状体モデルの融合による飛砂の流動過程の数値解析.海岸工学論文集.46: 491-495.
  • 後藤仁志,辻本哲郎,中川博次.(1994).流体・粒子相互作用系としての掃流層の数値解析.土木学会論文集.485(II-26): 11-19.
  • 中川博次,辻本哲郎,後藤仁志,渡辺幹広.(1993).粒子間干渉を考慮した掃流層の数値シミュレーション.水工学論文集.37: 605-610.
  • 後藤仁志,辻本哲郎,中川博次.(1992).PSI-セルモデルによるSaltation層の解析.海岸工学論文集.39: 266-270.

粒状体モデル

  • Tazaki, T., Harada, E., Gotoh, H. (2023). Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme. Coastal Engineering Journal. 65(2): 347-368. [Link]  
  • Ikari, H., Gotoh, H. (2023). Fully implicit discrete element method for granular column collapse. Comp. Part. Mech. 10: 261–271.[Link]
  • Harada, E., Ikari, H., Khayyer, A. and Gotoh, H.(2019). Numerical simulation for swash morphodynamics by DEM–MPS coupling model. Coastal Engineering Journal. 61(1): 2-14. [Link]
  • Harada, E., Tsuruta, N. & Gotoh, H.(2013). Two-phase flow LES of the sedimentation process of a particle cloud. Journal of Hydraulic Research. 51(2): 1-9. [Link]
  • Hajivalie, F., Yeganeh, A., Houshanghi, H. & Gotoh, H.(2012). Euler-Lagrange model for scour in front of vertical breakwater. Applied Ocean Res. 34: 96-106. [Link]
  • Yeganeh, A., Shabani, B., Gotoh, H. & Wang, S. S. Y.(2009). A Three-Dimensional Distinct Element Model for Bed-Load Transport. Jour. Hydraulic Res., IAHR. 47(2): 203-212. [Link]
  • Harada, E. & Gotoh, H.(2008). Computational Mechanics of Vertical Sorting of Sediment in Sheetflow Regime by 3D Granular Material Model. Coastal Eng. Jour. 50(1): 1-27. [Link]
  • Gotoh, H. & Sakai, T.(1997). Numerical Simulation of Sheetflow as Granular Material.  Jour. of Waterway, Port, Coastal, and Ocean Engrg., ASCE. 123(6): 329-336. [Link]
  • Gotoh, H. & Sakai, T.(2000). Behavior of bed-material particles as a granular material in a bed-load transport process. Jour. Hydroscience and Hydraulic Engrg., JSCE. 18(1): 141-151.
  • Yeganeh, A., Gotoh, H. & Sakai, T.(2000). Numerical study of particle diameter effect on oscillatory sheet flow transport with movable bed simulator. Annual Jour. of Hydraulic Eng., JSCE. 44: 653-658.
  • Gotoh, H. & Sakai, T.(1998). Accelerating Process of Surface-Sheared-Sand Layer. Jour. Hydroscience and Hydraulic Engrg., JSCE. 16(1): 109-115.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.(1996). Discrete probabilistic model of bed-load layer as granular assembles.  Jour. Hydroscience and Hydraulic Engrg., JSCE. 14(1): 13-23.
  • 田﨑拓海,原田英治,後藤仁志.(2022).体積保存型のDEM-MPS法による遡上波解析に基づく前浜の漂砂機構の計算力学.土木学会論文集B2(海岸工学).78(2): I_433-I_438.[Link]
  • 原田英治,田﨑拓海,後藤仁志,河野眞.(2020).3次元DEM-MPS法による初期ripple形成過程の計算力学的検討.土木学会論文集B2(海岸工学).76(2): I_475-I_480.[Link]
  • 原田英治,五十里洋行,後藤仁志,居村光孝,清水裕真.(2016).高精度MPS法とDEMによる砕波帯漂砂過程の数値シミュレーション.土木学会論文B2(海岸工学).72(2): I_583-I_588.[Link]
  • 原田英治,五十里洋行,後藤仁志,菅原康之,松藤慶之.(2015).MPS-DEMによる波打ち帯での漂砂過程の数値シミュレーション.土木学会論文B2(海岸工学).71(2): I_487-I_492.[Link]
  • 原田英治,後藤仁志.(2014).振動流下シートフロー状粒子流の内部構造の画像解析.土木学会論文集B2(海岸工学).70(2): I_746-I_750.[Link]
  • 原田英治,後藤仁志.(2009).シートフロー漂砂における鉛直分級過程の高解像度計算.土木学会論文集B2(海岸工学).65(1): 516-520.[Link]
  • 原田英治,後藤仁志.(2006).三次元数値移動床による混合粒径シートフロー漂砂の分級過程の解析.土木学会論文集B.62(1): 128-138.
  • 後藤仁志,鷲見 崇,酒井哲郎.(2006).個別要素法への陰解法の導入による数値移動床の改良.土木学会論文集B.62(2): 201-209.
  • 後藤仁志,原田英治,酒井哲郎,合田健一.(2006).数値移動床による格子型砂防ダム閉塞過程のシュミレーション.水工学論文集.50: 739-744.
  • 原田英治,後藤仁志,中田啓介.(2005).砂粒子の幾何形状特性がシートフロー漂砂の分級過程へ及ぼす影響.海岸工学論文集.52: 391-395.
  • 後藤仁志,五十里洋行,原田英治,酒井哲郎.(2005).大規模土砂流動シミュレーションのための3次元並列型数値移動床.水工学論文集.49: 883-888.
  • 原田英治,後藤仁志,田中秀範,大野正博,酒井哲郎.(2004).波浪下の液状化海底地盤中の埋設パイプラインの浮上過程.海岸工学論文集.51: 836-840.
  • 原田英治,後藤仁志,酒井哲郎,大野正博.(2003).三次元数値移動床による土石流堆積過程の数値シミュレーション.水工学論文集.47: 553-558.
  • 後藤仁志,原田英治,酒井哲郎.(2002).3次元数値移動床によるシートフロー層の鉛直分級過程の数値解析.海岸工学論文集.49: 471-475.
  • 後藤仁志,原田英治,酒井哲郎.(2002).三次元個別要素法による数値移動床の一般化.水工学論文集.46: 613-618.
  • 原田英治,後藤仁志,酒井哲郎.(2002).分級過程の三次元性に関する計算力学的アプローチ.水工学論文集.46: 619-624.
  • 後藤仁志,原田英治,酒井哲郎.(2001).混合粒径シートフロー漂砂の鉛直分級過程.土木学会論文集.691(II-57): 133-142.
  • 後藤仁志,原田英治,酒井哲郎.(2001).個別要素法に基づく移動床シミュレーターのモデル定数の最適化.土木学会論文集.691(II-57): 159-164.
  • 前野詩朗,後藤仁志,坪田裕至,原田英治.(2001).DEM-FEMモデルによる変動水圧場における護岸周辺地盤の流動解析.海岸工学論文集.48: 976-980.
  • 後藤仁志,原田英治,酒井哲郎.(2001).移動床における砂粒子間干渉による砂面擾乱の発生.水工学論文集.45: 637-642.
  • 原田英治,後藤仁志,酒井哲郎,羽間義照.(2001).混合粒径流砂の動的粗粒化過程の数値解析.水工学論文集.45: 655-660.
  • 後藤仁志,原田英治,酒井哲郎.(2000).個別要素法によるrolling grain rippleの発生過程の数値シミュレーション.海岸工学論文集.47: 481-485.
  • 原田英治,Yeganeh, A,後藤仁志,酒井哲郎.(2000).粒状体モデルによるシートフロー漂砂の分級過程の数値シミュレーション.海岸工学論文集.47: 491-495.
  • 酒井哲郎,後藤仁志,原田英治,高橋智洋,羽間義照.(2000).混合粒径シートフロー漂砂におけるアーマコートの非定常特性.海岸工学論文集.47: 496-500.
  • 後藤仁志,原田英治,酒井哲郎.(2000).数値移動床による混合粒径流砂の流送過程のシミュレーション.水工学論文集.44: 665-670.
  • 酒井哲郎,後藤仁志,沖 和哉,高橋智洋.(1999).混合粒径シートフロー漂砂の鉛直分級過程の可視化実験.海岸工学論文集.46: 516-520.
  • 後藤仁志,酒井哲郎,原田英治.(1999).移動床上のsaltation粒子の衝突・反発機構.水工学論文集.43: 647-652.
  • 後藤仁志,酒井哲郎.(1998).移動床におけるsaltation 粒子の反発機構に関する基礎的実験.水工学論文集.42: 1050-1056.
  • 後藤仁志,酒井哲郎.(1997).粒状体モデルによるsaltation・sheetflow共存域の数値解析.海岸工学論文集.44: 486-490.
  • 後藤仁志,酒井哲郎,酒井敦史.(1997).振動流下のシートフロー漂砂の流動特性.水工学論文集.41: 831-836.
  • 後藤仁志,酒井哲郎.(1997).河床構成粒子群との相互作用を考慮した流砂の流動過程の数値解析.水工学論文集.41: 819-824.
  • 後藤仁志,酒井哲郎,豊田泰晴,夛田哲也.(1996).振動流下の混合漂砂の鉛直分級機構.海岸工学論文集.43: 456-460.
  • 後藤仁志,酒井哲郎,豊田泰晴.(1996).表層せん断力の急増減に対するシートフロー層の動的応答.海岸工学論文集.43: 471-475.
  • 後藤仁志,酒井哲郎,豊田泰晴.(1996).傾斜面を流下する粒子流の数値シミュレーション.水工学論文集.40: 1039-1044.
  • 後藤仁志,酒井哲郎,豊田泰晴,酒井敦史.(1996).表層せん断力の急変に対する流動粒子群の応答特性.水工学論文集.40: 1045-1050.
  • 後藤仁志,酒井哲郎.(1995).表層せん断を受ける砂層の動的挙動の数値解析.土木学会論文集.521(II-32): 101-112.
  • 後藤仁志,辻本哲郎,中川博次.(1995).掃流層における粒子間衝突の流動機構に果たす役割.土木学会論文集.515(II-31): 23-32.
  • 後藤仁志,酒井哲郎,富永圭司.(1994).粒状体モデルによるシートフローの流動過程の数値シミュレーション.海岸工学論文集.41: 371-375.
  • 後藤仁志,酒井哲郎,富永圭司,豊田泰晴.(1994).変動波圧を受ける海底地盤の挙動の数値模擬への個別要素法の応用.海岸工学論文集.41: 596-600.
  • 後藤仁志,辻本哲郎,中川博次.(1994).掃流粒子群の流動過程に関する数値シミュレーション.土木学会論文集.485(II-26): 75-83.
  • 後藤仁志,辻本哲郎,中川博次.(1993).Saltationからシートフローへの遷移過程における砂粒子群の運動特性.海岸工学論文集.40: 326-330.
  • 後藤仁志,辻本哲郎,中川博次.(1993).粒状体モデルによる掃流粒子群の挙動に関する数値解析.水工学論文集.37: 611-616.

剛体モデル

  • 後藤仁志,原田英治,五十里洋行,安岡恒人,有光 剛,大江一也,鶴田修己.(2010).防波堤被覆ブロック群の安定性評価のためのワイヤー連結ブロック群シミュレーションの開発.土木学会論文集B2(海岸工学).66(1): 846-850.[Link]
  • 後藤仁志,原田英治,五十里洋行,大江一也,安岡恒人.(2010).粒子法とDEMの融合モデルによる被覆ブロック群の耐波安定性評価.土木学会論文集B.66(3): 258-267.[Link]
  • 原田英治,後藤仁志,酒井哲郎,合田健一.(2007).3D-DEM による消波ブロック群の沈下過程の数値シミュレーション.海岸工学論文集.54: 921-925.
  • 原田英治,後藤仁志,酒井哲郎,合田健一.(2007).倒木を伴う急傾斜地崩壊災害の3次元個別要素法による数値シミュレーション.水工学論文集.51: 841-846.
  • 後藤仁志,原田英治,高山知司,水谷雅裕,不動雅之,岩本晃幸.(2005).高波浪による消波ブロック群高密度化のメカニズム.海岸工学論文集.52: 781-785.
  • 酒井哲郎,後藤仁志,原田英治,井元康文,大野正博.(2003).被圧海底地盤の流動化による護岸前面の捨石群端部の沈下過程.海岸工学論文集.50: 861-865.
  • 原田英治,後藤仁志,酒井哲郎,大野正博.(2002).3次元モデルによる消波ブロック群の崩壊過程におけるブロック間応力推定.海岸工学論文集.49: 801-805.
  • 原田英治,後藤仁志,酒井哲郎,大野正博.(2002).ブロックの形状特性を考慮した被覆層破壊過程のシミュレーション.海岸工学論文集.49: 796-800.
  • 原田英治,後藤仁志,酒井哲郎.(2001).被覆ブロックの幾何配列特性の破壊抵抗に及ぼす影響.海岸工学論文集.48: 936-940.
  • 後藤仁志,原田英治,酒井哲郎.(2001).風倒木の渓流斜面崩壊過程に及ぼす影響.水工学論文集.45: 721-726.

Page Top


群集行動モデル
主要文献

  • Harada, E., Gotoh, H. & Rahman, N. B. A.(2015). A switching action model for DEM-based multi-agent crowded behavior simulator. Safety Science. 79: 105–115. [Link]
  • Gotoh, H., Harada, E. & Andoh, E.(2012). Simulation of pedestrian contra-flow by multi-agent DEM model with self-evasive action model. Safety Science. 50(2): 326-332. [Link]
  • 川崎順二,澁谷晃生,原田英治,後藤仁志.(2021).浸水域の群集避難シミュレーションのための流体力関数の提案.土木学会論文集F2(地下空間研究).77(1): 1-10.[Link] 
  • 川崎順⼆,原⽥英治,藤井拓也,後藤仁志,⽔⼝尚司.(2018).津波浸⽔時避難の⼆⾜歩⾏モデル開発のための⽔理実験.⼟⽊学会論⽂集B2(海岸⼯学).74(2): l_403-l_408.
  • 原田英治,須﨑純一,後藤仁志,藤井琢也.(2016).DEM型群集避難シミュレータと航空写真測量の融合による津波災害避難計算.土木学会論文B2(海岸工学).72(2): I_1597-I_1602.[Link]
  • 原田英治,後藤仁志,河野傑史,徐詩涵,川崎順二,水口尚司.(2015).左折自動車と歩行者混在交通計算への群集行動シミュレータの適用.第35回交通工学研究発表会論文集.265-270.
  • 原田英治,後藤仁志,徐詩涵.(2014).アンケート調査による進路変更モデルの開発.第34回交通工学研究発表会論文集.127-131.
  • 原田英治,後藤仁志,吉澤友貴,宮崎智博.(2013).群集行動シミュレータによる大阪駅改札付近の帰宅困難者分布予測.第33回交通工学研究発表会論文集.261-266.
  • 原田英治,後藤仁志,内屋雅人,宮崎智博.(2012).自転車の回避挙動モデルの構築に向けた基礎的検討,.第32回交通工学研究発表会論文集.447-454.
  • 原田英治,後藤仁志,山形佑,安藤栄祐.(2011).群集歩行シミュレータのための自転車モデルの開発とその適用.第31回交通工学研究発表会論文集.399-404.
  • 原田英治,後藤仁志,安藤栄祐.(2010).群集歩行シミュレータのための歩行行動モデルの改善.第30回交通工学研究発表会論文集.333-336.
  • 後藤仁志,原田英治,丸山由太,高橋和秀,大庭啓輔.(2008).津波防災のための市街地改造計画に対する避難行動シミュレータの貢献.海岸工学論文集.55: 1371-1375.
  • 後藤仁志,原田英治,酒井哲郎,丸山由太.(2006).Boid型群衆モデルによる津波避難シミュレーションの提案.海岸工学論文集.53: 1311-1315.
  • 後藤仁志,原田英治,久保有希,酒井哲郎.(2005).津波氾濫時の市街地内群衆避難の個体ベースシミュレーション.海岸工学論文集.52: 1251-1255.
  • 後藤仁志,原田英治,久保有希,酒井哲郎.(2004).個別要素法型群衆行動モデルによる津波時の避難シミュレーション.海岸工学論文集.51: 1261-1265.

津波避難解析

  • Harada, E., Gotoh, H. & Rahman, N. B. A.(2015). A switching action model for DEM-based multi-agent crowded behavior simulator. Safety Science. 79: 105–115. [Link]
  • 川崎順二,原田 英治,後藤仁志,水口尚司,春名 慧.(2019).DEM-MPSカップリングモデルを用いた浸水時の登段避難過程シミュレーション.土木学会論文集F2(地下空間研究).75(1): 1-16.[Link]
  • 川崎順⼆,原⽥英治,藤井拓也,後藤仁志,⽔⼝尚司.(2018).津波浸⽔時避難の⼆⾜歩⾏モデル開発のための⽔理実験.⼟⽊学会論⽂集B2(海岸⼯学).74(2): l_403-l_408.
  • 後藤仁志,原田英治,高橋秀文,山口一哉,丸山由太,高橋和秀,森 貴之.(2008).防潮堤改修に伴う津波来襲時の砂浜からの群集避難プロセスの改善評価.海岸工学論文集.55: 1366-1370.
  • 後藤仁志,原田英治,丸山由太,高橋和秀,大庭啓輔.(2008).津波防災のための市街地改造計画に対する避難行動シミュレータの貢献.海岸工学論文集.55: 1371-1375.
  • 後藤仁志,原田英治,酒井哲郎,丸山由太.(2006).Boid型群衆モデルによる津波避難シミュレーションの提案.海岸工学論文集.53: 1311-1315.
  • 後藤仁志,原田英治,久保有希,酒井哲郎.(2005).津波氾濫時の市街地内群衆避難の個体ベースシミュレーション.海岸工学論文集.52: 1251-1255.
  • 後藤仁志,原田英治,久保有希,酒井哲郎.(2004).個別要素法型群衆行動モデルによる津波時の避難シミュレーション.海岸工学論文集.51: 1261-1265.

その他の解析

  • Gotoh, H., Harada, E. & Andoh, E.(2012). Simulation of pedestrian contra-flow by multi-agent DEM model with self-evasive action model. Safety Science. 50(2): 326-332. [Link]
  • 川崎順二,澁谷晃生,原田英治,後藤仁志.(2021).浸水域の群集避難シミュレーションのための流体力関数の提案.土木学会論文集F2(地下空間研究).77(1): 1-10.[Link] 
  • 川崎順二,原田英治,広瀬将真,後藤仁志,水口尚司.(2019).歩行抵抗の数値流体力学的評価による津波浸水時の水中避難行動モデルの高度化.土木学会論文集B2(海岸工学).75(2): I_1387-I_1392.  [Link] 
  • 原田英治,須﨑純一,後藤仁志,藤井琢也.(2016).DEM型群集避難シミュレータと航空写真測量の融合による津波災害避難計算.土木学会論文B2(海岸工学).72(2): I_1597-I_1602.[Link]
  • 原田英治,後藤仁志,河野傑史,徐詩涵,川崎順二,水口尚司.(2015).左折自動車と歩行者混在交通計算への群集行動シミュレータの適用.第35回交通工学研究発表会論文集.265-270.
  • 原田英治,後藤仁志,徐詩涵.(2014).アンケート調査による進路変更モデルの開発.第34回交通工学研究発表会論文集.127-131.
  • 原田英治,後藤仁志,吉澤友貴,宮崎智博.(2013).群集行動シミュレータによる大阪駅改札付近の帰宅困難者分布予測.第33回交通工学研究発表会論文集.261-266.
  • 原田英治,後藤仁志,内屋雅人,宮崎智博.(2012).自転車の回避挙動モデルの構築に向けた基礎的検討.第32回交通工学研究発表会論文集.447-454.
  • 原田英治,後藤仁志,山形佑,安藤栄祐.(2011).群集歩行シミュレータのための自転車モデルの開発とその適用.第31回交通工学研究発表会論文集.399-404.
  • 原田英治,後藤仁志,安藤栄祐.(2010).群集歩行シミュレータのための歩行行動モデルの改善.第30回交通工学研究発表会論文集.333-336.
  • 原田英治,後藤仁志,丸山由太.(2007).OV模型を援用したDEM型群衆避難行動モデルの提案.水工学論文集.51: 553-558.
  • 原田英治,後藤仁志,酒井哲郎,久保有希.(2006).地下街浸水時の群衆避難の個体ベースシミュレーション.水工学論文集.50: 589-594.
  • 後藤仁志,原田英治,久保有希,酒井哲郎.(2005).DEM型群衆行動モデルによる浸水地下街からの避難シミュレーション.水工学論文集.49: 607-612.
  • 橋本麻末,後藤仁志,原田英治,酒井哲郎.(2005).Boid型魚群行動モデルに基づく数値魚道の開発.水工学論文集.49: 1477-1482.

Page Top


海岸工学一般(波浪,漂砂,構造物,環境)

  • Liang, D., Gotoh, H., Scott, N., & Tang, H.(2013). Experimental Study of Local Scour around Twin Piles in Oscillatory Flow. J. Waterway, Port, Coastal, Ocean Eng. 139 (5): 404–412. [Link]
  • 鶴田修己,鈴木高二朗,喜夛司,宮田正史,竹信正寛,後藤仁志.(2017).防波堤を越流する津波越流波力の算定に関する検討.土木学会論文B2(海岸工学).73(2): I_925-I_930.[LINK]
  • 後藤仁志,五十里洋行,柴田卓詞,小倉和己,殿最浩司,志方建仁.(2010).津波来襲時のコンテナ群漂流・水没シミュレーション.土木学会論文集B2(海岸工学).66(1): 806-810.[Link]
  • 酒井哲郎,後藤仁志,原田英治,許 伶宅,岩本晃幸.(2004).人工海浜砂層内空洞の形成過程に及ぼす埋設物の影響.海岸工学論文集.51: 806-810.
  • 原田英治,後藤仁志,酒井哲郎,鄭 知博.(2003).波浪による護岸隣接砂層内の空洞成長過程の3Dシミュレーション.海岸工学論文集.50: 891-895.
  • 原田英治,後藤仁志.(2004).河床礫付着藻類の剥離過程の数値予測への数値移動床の貢献.水工学論文集.48: 679-684.
  • 酒井哲郎,後藤仁志,原田英治,井元康文,田中秀範.(2002).海底地盤の液状化による護岸前面捨石群の沈下過程.海岸工学論文集.49: 866-870.
  • 後藤仁志,酒井哲郎,仁木将人,八木哲生.(2002).人工磯の新しい近自然化シナリオへの水理解析の貢献.海岸工学論文集.49: 1276-1280.
  • 酒井哲郎,後藤仁志,原田英治,羽間義照,井元康文.(2001).波浪による海底地盤の液状化が漂砂量に及ぼす影響.海岸工学論文集.48: 981-985.
  • 酒井哲郎,間瀬 肇,後藤仁志,中西 隆.(1997).透水層の位置と長さが間隙水浸出流速に及ぼす影響.海岸工学論文集.44: 676-680.
  • 酒井哲郎,後藤仁志,沖 和哉,中村隆志.(1997).砂浜生物のハビタートシミュレーション.海岸工学論文集.44: 696-700.
  • 酒井哲郎,後藤仁志,川崎順二,高尾和宏.(1996).振動流・水圧変動共存下での地盤内間隙水圧分布.海岸工学論文集.43: 1006-1010.
  • 酒井哲郎,後藤仁志,柏村真直,川崎順二.(1995).波圧変動の海底床形態に及ぼす影響.海岸工学論文集.42: 486-490.
  • 後藤仁志,酒井哲郎,豊田泰晴,酒井淳史.(1995).暴浪時の二枚貝の洗い出し過程の漂砂力学的側面.海岸工学論文集.42: 501-505.
  • 酒井哲郎,後藤仁志,森川 淳,川崎順二.(1995).高波圧を受ける海底地盤内間隙水圧の分布特性.海岸工学論文集.42: 1021-1025.
  • 酒井哲郎,後藤仁志,森川 淳.(1994).海底面における排水条件の非一様性が地盤内間隙水圧分布に与える影響.海岸工学論文集.41: 911-915.
  • 間瀬 肇,坂本雅信,酒井哲郎,後藤仁志.(1994).ニューラルネットワークを用いた捨石防波堤の安定性評価.海岸工学論文集.41: 761-765.
  • 酒井哲郎,後藤仁志,森川 淳,柏村真直.(1994).海底面の水圧変動に対する地盤内間隙水圧の応答特性に関する基礎的実験.水工学論文集.38: 511-516.
  • 後藤仁志,間瀬 肇,坂本雅信.(1994).ニューラルネットワークを用いた護岸被災形態の類型化.水工学論文集.38: 833-836.
  • 酒井哲郎,後藤仁志,山本哲也,柏村真直.(1993).水圧変動と振動流の同時作用下での砂地盤上のブロックの沈下.海岸工学論文集.40: 811-815.

Page Top


書籍(後藤仁志執筆分)

  • (共著)⽔理公式集 [2018年版] ⼟⽊学会,丸善出版,p.929, 2018.
  • (単著)粒子法,森北出版,p.289, 2018.
  • (編著) Computational Wave Dynamics, World Scientific Publishing Co., 234pp, 2013.
  • (共著・編集代表)土木学会海岸工学委員会・数値波動水槽研究小委員会編:数値波動水槽,土木学会,p.228, 2012.
  • (共著)川の技術のフロント,技報堂出版,p.164, 2007.
  • (単著)数値流砂水理学,森北出版,p. 223, 2004.
  • (共著)防災辞典,築地書館,p. 543, 2002.
  • (共著)土木学会海岸工学委員会・研究現況レビュー小委員会編:漂砂環境の創造に向けて,土木学会, p. 359, 1998.


書籍(原田英治執筆分)

  • (共著)⽔理公式集 [2018年版] ⼟⽊学会,丸善出版,p.929, 2018.
  • (共著)Computational Wave Dynamics, World Scientific Publishing Co., p.234, 2013.
  • (共著)数値波動⽔槽,⼟⽊学会海岸⼯学委員会・数値波動⽔槽研究⼩委員会編,⼟⽊学会, p.228,2012.

Page Top


総説・解説
粒子法

  • 原田英治:固液混相流モデルによる流砂・漂砂の数値シミュレーション,⽇本流体⼒学会誌「ながれ」/特集「粒⼦が混ざったながれ」,Vol.34, No.5, pp.339-344, 2015.
  • 後藤仁志:高精度粒子法,水工学に関する夏期研修会講義集,土木学会,B-4-1-18, 2012.
  • 後藤仁志:粒子法による数値波動水槽の構築,水工学に関する夏期研修会講義集,土木学会,B-3-1-20, 2007.
  • 後藤仁志:流水表情の数値シミュレーション-親水都市デザインのためのアメニティー水理学,日本流体力学会誌「ながれ」 / 特集『ながれの表情とアメニティー』,Vol.23, No.2, pp.79-86,2004.
  • 後藤仁志:数値流体力学の新機軸・粒子法,電力土木,No.292, pp.3-8, 2001.

数値流砂水理学

  • 原田英治:DEMによる漂砂過程および耐波設計に関する応用計算,水工学に関する夏期研修会講義集,土木学会,B-7-1-15, 2012.
  • 後藤仁志:水域環境評価への固液混相流モデルの貢献,混相流 / 特集『モノづくりと混相流(8)』,Vol.20, No.4, pp.328-335,2006.
  • 後藤仁志:粒子法による流砂・漂砂水理学の展開,第21回混相流シンポジウム講演論文集,pp.29-36, 2002.
  • 後藤仁志:流砂・漂砂の流動モデルにおける「粒子」的視点,日本流体力学会誌「ながれ」 / 特集『流れと粒子』,Vol.21, No.3, pp.240-249,2002.
  • 後藤仁志:Lagrange型砂粒子運動モデルに基づく数値流砂力学の展開,混相流 / 特集『多自然型河川と混相流』,Vol.13, No.1, pp.42-51,1999.
  • 後藤仁志:掃流砂・浮遊砂のモデリングと『数値流砂力学』の展開,水理講演会10年の歩みとこれからの基礎水理学の展開,土木学会水理委員会基礎水理部会,pp.61-66,1999.
群集行動モデル
  • 後藤仁志:都市水害における群衆避難のシミュレーション,計算工学/特集『安全・安心のための計算工学』,Vol.12, No. 2, pp.23-26, 2007.

Page Top


招待講演等

  • Goth, H.:Accurate particle method for computational sediment dynamics, Keynote Lecture, The 3rd symposium on two‐phase modelling for sediment dynamics in geophysical flows THESIS), 2016.9.
  • Goth, H.:Improved Particle Methods for Violent Free-Surface Flow Computation, Keynote Lecture, 3rd International Conference on Violent Flows VF-2016,2016.3.
  • 後藤仁志:高精度粒子法による流体シミュレーションの展開,第3回混相流に関する最先端科学技術シンポジウム,2015.11.
  • 後藤仁志:圧力擾乱抑制のための高精度粒子法の展開,京都大学数理解析研究所研究集会・非線形波動現象の数理と応用,2013.10.
  • 後藤仁志:都市防災シミュレーションの最前線,京都大学工学部公開講座,2013.7.
  • Goth, H.:Numerical Wave Flume for Simulating Flows with Violent Free-Surface Motion, The 11th International Workshop on Coastal Disaster Prevention(合田良實先生追悼ワークショップ),2013.4.
  • 後藤仁志:高精度粒子法,水工学に関する夏期研修会,北海道大学工学部,2012.8.
  • 原田英治:DEMによる漂砂過程および耐波設計に関する応用計算,水工学に関する夏期研修会,北海道大学工学部,2012.8.
  • 後藤仁志:津波災害減災への計算工学の貢献,日本技術士会近畿本部環境研究会CPD講演会,2012.7.
  • 後藤仁志:高精度粒子法と数値波動水槽,計算粉体力学研究会,同志社大学今出川キャンパス,2011.12.
  • Gotoh, H.: Lagrangian Particle Method - Advanced Technology for Numerical Wave Flume, Invited Lecture on Plenary Session of Hydrodynamics, ISOPE-2009, Osaka, Japan, 2009.
  • 後藤仁志:粒子法の基礎および海岸工学への応用研究の現状(特別講義),船舶工学会性能・運動分野「夏の学校」,神戸セミナーハウス,2008.8
  • Gotoh, H.: Simulation of Wave Overtopping on Stepped Seawall with Drainage by the MPS Method, Violent Flows-2007, Fukuoka, Japan, 2007.
  • 後藤仁志:粒子法による数値波動水槽の構築,水工学に関する夏期研修会,九州大学工学部,2007.8.
  • 後藤仁志:MPS法によるストリーム型数値魚道の開発,理論応用力学講演会,日本学術会議,2007.3.
  • Gotoh, H.: Contribution of the Particle Method in Hydro-Science and Engineering,九州大学応用力学研究所国際研究集会移動境界および界面の流れ解析」,九州大学,2005.
  • 後藤仁志:数値流砂水理学の現状と課題,農業土木学会応用水理研究会研究集会,東京大学,2002.
  • 後藤仁志:流砂・漂砂水理学と粒子法,京都大学数理解析研究所研究集会・複雑流体の数理 III,京都大学,2002.
  • 後藤仁志:粒子法による流砂・漂砂水理学の展開,第21回混相流シンポジウム,名古屋大学,2002.
  • 後藤仁志:移動床水理学における計算力学的アプローチ,第4回オーガナイズド混相流フォーラム OMF, 2000-Takayama, 2000.

Page Top


国際会議・シンポジウム等論文集(審査付)
粒子法

  • Shimizu, Y., Khayyer, A., and Gotoh, H.: Development of Enhanced ISPH method for accurate and consistentcomputational modeling of fluid flow interactions with saturated/unsaturated porous media of spatially variableporosity, 14th International SPHERIC Workshop, Exeter, United Kingdom, pp. 219-226, June 25–27, 2019.
  • Khayyer, A., Gotoh, H., Shimizu, Y., and Nishijima, N.: Development of 3D fully Lagrangian meshfree solvers forhydroelastic fluid-structure interactions, 14th International SPHERIC Workshop, Exeter, United Kingdom, pp. 1-8,June 25–27, 2019.
  • Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y., Key Aspects for Development of Reliable and Efficient Fully-Lagrangian Computational Methods for Hydroelastic Fluid-Structure Interactions, 8th International Conference The8th International Conference on Hydroelasticity in Marine Technology, Seoul, Korea, 2018.
  • Falahaty, H., Khayyer, A. and Gotoh, H.: A coupled incompressible SPH-Hamiltonian SPH for fluidstructureinteractions, Proc. ISOPE-2018,Sapporo, Japan, 581-588, 2018.
  • Shimizu, Y., Tsuruta, N., Khayyer, A. and Gotoh, H.: On development of accurate multi-phaseparticle methods with SPS turbulence modeling for ocean engineering applications, Proc.ISOPE-2018, Sapporo, Japan, 532-538, 2018.
  • Khayyer, A., Gotoh, H., Shimizu, Y., Tsuruta, N. and Sasagawa, H.: Development of consistent,conservative and accurate multi-resolution projection-based particle methods for hydroelastic fluidstructureinteractions, 13th International SPHERIC Workshop, Galway, Ireland, pp. 110-117, June 26-28, 2018.
  • Tsuruta, N., Khayyer, A. and Gotoh, H.: Enhancement of accuracy of stabilizer for projection-basedparticle method, 13th International SPHERIC Workshop, Galway, Ireland, pp. 9-15, June 26-28, 2018.
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Teng, K.W.P.: Two novel projection-based particlemethods for multiphase flows with large density ratios and discontinuous density fields, 12thinternational SPHERIC workshop, Ourense, Spain, pp. 159-166, June 2017.
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Falahaty, H.: An enhanced ISPH-SPH coupled method for incompressiblefluid-elastic structure interactions, the Proceedings of the 2017 SPHERIC Beijing International Workshop, Beijing,China, pp. 23-29, October 17-20, 2017.
  • Khayyer, A., Gotoh, H. and Shimizu, Y.: Comparative Study on Accuracy and ConservationProperties of Particle Regularization Schemes and Proposal of an Improved Particle Shifting Scheme,11th International SPHERIC Workshop, Technische Universität München (TUM), Garching,Germany, pp. 416-423, June 2016.
  • Hwang, S.C., Khayyer, A., Gotoh, H. and Park, J.C.: Simulations of Incompressible Fluid FlowElastic StructureInteractions by a Coupled Fully Lagrangian Solver, Proc. ISOPE-2015, Kona, Hawaii, USA, ISOPE-I-15-398,2015.
  • Khayyer, A. and Gotoh, H.: A Multi-Phase Compressible-Incompressible Particle Method for WaterSlamming, Proc. ISOPE-2015, Kona, Hawaii, USA, ISOPE-I-15-397, 2015.
  • Gotoh, H., Khayyer, A. and Shimizu, Y.: Improvement of Energy Conservation in Particle Methodswith Enhanced Schemes, Proc. ISOPE-2015, Kona, Hawaii, USA, ISOPE-I-15-396, 2015.
  • Khayyer, A., Gotoh, H., Shimizu, Y. and Gotoh, K.: On Enhancement of Energy ConservationProperties of ISPH and MPS Methods, 10th international SPHERIC workshop, Parma, Italy, pp. 139-146, June2015.
  • Khayyer, A., Gotoh, H. and Tsuruta N.: A Novel Laplacian-Based Surface Tension Model forParticle Methods, 9th international SPHERIC workshop, Paris, France, pp. 64-71, June 2014.
  • Khayyer, A., Gotoh, H., Ikari, H. and Tsuruta, N.: A Novel Error-Minimizing Scheme to Enhancethe Performance of Compressible-Incompressible Multiphase Projection-Based Particle Methods, 8thinternational SPHERIC workshop, Trondheim, Norway, pp. 68-73, June 2013.
  • Tsuruta, N., Khayyer, A., Gotoh, H., Ikari, H.: A Simple and Effective Scheme for DynamicStabilization of Particle Methods, 8th international SPHERIC workshop, Trondheim, Norway, pp. 55-61, June2013.
  • Yoshifuji, N., Gotoh, H. and Ikari, H.: Numerical Analysis on Deformation of Wave Dissipating Blocks by GPU-Accelerated DEM Computation, Proc. International Session in Conf. of Coast Eng., Vol.3, JSCE, pp. 16-20, 2012.
  • Khayyer, A., Gotoh, H. & Ikari, H.: Development of a Novel 3D Higher Order Laplacian Model for Enhanced Prediction of Wave Impact Pressure Calculation in 3D MPS-Based Simulations, Proc. International Session in Conf. of Coast Eng., Vol.3, JSCE, pp. 11-15, 2012.
  • Gotoh, H., Khayyer, A., Ikari, H. & Tsuruta, N.: An Improved 3D Particle Method for Violent Wave Impact Calculations, Proc. 2nd International Conference on Violent Flows, Nantes France, pp.188-193, 2012.
  • Khayyer, A., Gotoh, H., Ikari, H. & Tsuruta, N.: An Enhanced Particle Method for Simulation of Violent Multiphase Flows, Proc. 2nd International Conference on Violent Flows, Nantes France, pp.51-57, 2012.
  • Gotoh, H. & Khayyer, A.: An Improved Consistent 3D Particle Method for Enhanced Wave Impact Calculations, Proc. the 7th International SPHERIC Workshop, Prato, Italy, pp.375-380, 2012.
  • Khayyer, A. & Gotoh, H.: A Consistent Particle Method for Simulation of Multiphase Flows with High Density Ratios, Proc. the 7th International SPHERIC Workshop, Prato, Italy, pp.340-346, 2012.
  • Khayyer, A., Gotoh, H. & Ikari, H.: Refined Simulations of Violent Sloshing Flows by an Enhanced Particle Method, Proc. International Session in Conf. of Coast Eng., Vol.2, JSCE, pp. 6-10, 2011.
  • Khayyer, A. & Gotoh, H.: Refined Wave Impact Pressure Calculations by An Enhanced Particle Method, Proc. Coastal Structures 2011, Yokohama, on CD-ROM, 2011.
  • Ikari, H., Gotoh, H. & Khayyer, A.: Numerical simulation on moored floating body in wave by improved MPS method, Proc. Coastal Structures 2011, Yokohama, on CD-ROM, 2011.
  • Hori, C., Gotoh, H., Khayyer, A. & Ikari, H.: Simulation of flip-through wave impact by cmps method with sps-turbulence model, Proc. Coastal Structures 2011, Yokohama, on CD-ROM, 2011.
  • Khayyer, A., Gotoh, H., Ikari, H. and Hori, C.: Development of 3D Parallelized CMPS-HS with a Dynamic Domain Decomposition Approach, Proc. International Session in Conf. of Coast Eng., Vol.1, JSCE, pp. 6-10, 2010.
  • Gotoh, H., Ikari, H. and Yoshifuji, N.: 3D Numerical Wave Flume with Interactive Pre-and Post-Processors, Proc. International Session in Conf. of Coast Eng., Vol.1, JSCE, pp. 71-75, 2010.
  • Gotoh, H., Ikari, H., Khayyer, A. and Hori, C.: 3D-CMPS Method for Enhanced Simulation of a Plunging Breaker and Resultant Splash-up, Proc. APAC, 2009, Singapore, paper on CD-ROM, 2009.
  • Ikari, H., Gotoh, H., Tonomo, K. and Mizoe, A.: Numerical Simulation of Drifting Container on Apron due to Tsunami by 3D MPS Method, Proc. APAC, 2009, Singapore, paper on CD-ROM, 2009.
  • Khayyer, A. and Gotoh, H.: Improved MPS methods for wave impact calculations, Proc. Coastal Dynamics, Tokyo, Japan, Paper No. 4 pp.1-14, 2009.
  • Gotoh, H., Khayyer, A., Ikari, H. and Hori, C.: 3D-CMPS method for improvement of water-surface tracking in breaking waves, Proc. Coastal Dynamics, Tokyo, Japan, Paper No. 5 pp.1-11, 2009.
  • Ikari, H. and Gotoh, H.: Interaction model of moored buoy and breaking wave based on Lagrangian particle method, Proc. Coastal Dynamics, Tokyo, Japan, Paper No. 17 pp.1-10, 2009.
  • Gotoh, H., Khayyer, A. and Ikari, H.: Simulation of SPHERIC Benchmark Test 2, “3D schematic dam break and evolution of the free surface”, by an improved parallelized particle method and SPHYSICS, Proc. 4th SPHERIC Workshop, Nantes, France, pp.265-272, 2009.
  • Khayyer, A., Gotoh, H., and Shao, S.: An Improved Incompressible SPH Method for Wave Impact Simulations, Proc. 4th SPHERIC Workshop, Nantes, France, pp.286-293, 2009.
  • Gotoh, H.: Lagrangian Particle Method - Advanced Technology for Numerical Wave Flume, Invited Lecture on Plenary Session of Hydrodynamics, Proc. ISOPE-2009, Osaka, Japan, pp. 333-339, 2009.
  • Khayyer, A. and Gotoh, H.: Wave Impact Calculations by Improved SPH Methods, Proc. ISOPE-2009, Osaka, Japan, pp. 340-347, 2009.
  • Gotoh, H., Ikari, H. & Yasuoka, T.: Simulation of Armor Blocks in front of Caisson Breakwater by DEM-MPS Hybrid Model, Proc. ISOPE-2009, Osaka, Japan, pp. 365-370, 2009.
  • Ikari, H. and Gotoh, H.: Lagrangian Particle Method for Tracking of Buoy Moored by Chain, Proc. ISOPE-2009, Osaka, Japan, pp. 371-375, 2009.
  • Gotoh, H., Khayyer, A., Ikari, H. and Hori, C.: Refined Reproduction of a Plunging Breaking Wave and Resultant Splash-up by 3D-CMPS Method, Proc. ISOPE-2009, Osaka, Japan, pp. 518-524, 2009.
  • Khayyer, A., Gotoh, H., and Shao, S.: Corrected SPH for Incompressible fluid for accurate water-surface tracking in plunging breaker, Proc. ICCE, Hamburg, Germany, pp.132-143, 2008.
  • Gotoh, H., Ikari, H., Yasuoka, T., Muramoto, S. and Takahashi, K.: Particle method for simulating wave overtopping on stepped seawall with drainage, Proc. ICCE, Hamburg, Germany, pp.3071-3083, 2008.
  • Ikari, H. and Gotoh, H.: Parallelization of MPS Method for 3-D Wave Analysis, Advances in Hydro-Science and -Engineering, Vol. IV - Proc. 8th ICHE, Nagoya Japan, paper on CD-ROM, 2008.
  • Gotoh, H. & Khayyer, A.: Improved MPS Methods for Refined Simulation of Free-Surface Hydrodynamic Flows, Advances in Hydro-Science and -Engineering, Vol. IV - Proc. 8th ICHE, Nagoya Japan, paper on CD-ROM, 2008.
  • Khayyer, A., Gotoh, H. & S. Shao: Corrected Incompressible SPH for Accurate Water-Surface -Tracking in Plunging Breaking Waves, Proc. APCOM’07 in conjunction with EPMESC XI, Kyoto, Japan, on CD, 2007.
  • Gotoh, H. & Ikari, H.: Numerical Analysis on Girder Bridge Washed Away by Tsunami Run-up, Proc. Violent Flows-2007, Fukuoka, Japan, pp.159-164, 2007.
  • Gotoh, H., Ikari, H., Muramoto, S. & Yasuoka, T.:Simulation of Wave Overtopping on Stepped Seawall with Drainage by the MPS Method, Proc. Violent Flows-2007, Fukuoka, Japan, pp.11-16, 2007.
  • Gotoh, H., Khayyer, A. & S. Shao: Corrected Incompressible SPH Model for the Simulation of Wave Breaking and Post-Breaking, Proc. Violent Flows-2007, Fukuoka, Japan, pp.47-53, 2007.
  • Ikari, H., Gotoh, H. & Sakai, T.: Simulation of Wave Run-up by Liquid-Gas Two-Phase-Flow MPS Method, Proc. APAC2005, on CD, 2005.
  • Gotoh, H., Ikari, H. & Sakai, T.: Simulation of Plunging Breaker by 3D MPS Method, Proc. APAC2005, on CD, 2005.
  • Sakai, T., Gotoh, H., & Ikari, H.: Wave-Breaking Graphics by MPS Method with Sub-Particle-Scale Texture Model, Proc. Waves2005, Madrid, Spain, paper on CD-ROM, 2005.
  • Ikari, H., Gotoh, H. & Sakai, T.: Liquid-Gas Two-Phase-Flow MPS Method for Simulation of Wave Overtopping, Proc. Waves2005, Madrid, Spain, paper on CD-ROM, 2005.
  • Gotoh, H., Ikari, H. & Sakai, T.: Development of Numerical Wave Flume by 3D MPS Method, Proc. Waves2005, Madrid, Spain, paper on CD-ROM, 2005.
  • Gotoh, H., Ikari, H. & Sakai, T. : Numerical Simulation of Stream over Staircase by 3D Particle Method, Proc MPMD-2005, Kyoto, Japan, pp. 185-190, 2005.
  • Ikari, H., Gotoh, H., Hashinoto, M. & Sakai, T. : Refined Surface Tension Model for Lagrangian Simulation of Wave Breaking, Proc. ICCE, Lisboa, Portugal, pp.331-343, 2004.
  • Gotoh, H., Hayashi, M. & Sakai, T.: Lagrangian Multiphase Flow Model for Debris-Flow-Induced Tsunami, Proc. ICCE, Lisboa, Portugal, pp.1121-1133, 2004.
  • Gotoh, H., Sumi, T. & Sakai, T.: Preprocessor for Human Interface of Numerical Wave Flume, Advances in Hydro-Science and -Engineering, Vol. VI - Proc. 6th ICHE, Brisbane, Australia, paper on CD-ROM, 2004.
  • Gotoh, H., Ikari, H. & Sakai, T.: Simulation of Falling Water by Lagrangian Particle Method, Advances in Hydro-Science and -Engineering, Vol. VI - Proc. 6th ICHE, Brisbane, Australia, paper on CD-ROM, 2004.
  • Gotoh, H., Hashinoto, M., Ikari, H. & Sakai, T.: Development of Particle System as Postprocessor of Lagrangian Particle Method, Advances in Hydro-Science and -Engineering, Vol. VI - Proc. 6th ICHE, Brisbane, Australia, paper on CD-ROM, 2004.
  • Gotoh, H., Hayashi, M. & Sakai, T.: Refined Solid-Phase Model in Lagrangian Particle Method for Solid-Liquid Two-Phase-Flow, Advances in Hydro-Science and -Engineering, Vol. VI - Proc. 6th ICHE, Brisbane, Australia, paper on CD-ROM, 2004.
  • Shao, S., Gotoh, H. & Memita, T.: Simulation of Wave Overtopping on Partially Immersed Breakwater by SPH Model, Proc. APAC, 2003, Makuhari-Japan, paper on CD-ROM, 2003.
  • M. Hayashi, Gotoh, H., Sakai, T. & Ikari, H.: Lagrangian Gridless Model of Toe Scouring of Seawall due to Tsumani Return Flow, Proc. APAC, 2003, Makuhari-Japan, paper on CD-ROM, 2003.
  • Gotoh, H., M. Hayashi, Sakai, T. & Oda, K.: Numerical Model of Wave Breaking by Lagrangian Particle Method with Sub-Particle-Scale Turbulence Model, Proc. APAC, 2003, Makuhari-Japan, paper on CD-ROM, 2003.
  • Gotoh, H., M. Hayashi & T. Sakai: Simulation of Tsunami-Induced Flood in Hinterland of Seawall by Using Particle Method, Proc. ICCE, Cardiff, UK, pp.1155-1167, 2002.
  • Gotoh, H., Sakai, T., & M. Hayashi: Lagrangian Gridless Model for Structure-Fow-Floats Triangular Interaction, Proc. 13th IAHR-APD Cong., Singapore, Vol. 1, pp. 327-332, 2002.
  • Gotoh, H., Sakai, T. & M. Hayashi & Andoh, S.:Lagrangian Solid-Liquid Two-Phase Fow Model for Wave-Seabed Interaction, Proc. 13th IAHR-APD Cong., Singapore, Vol. 2, pp. 765-770, 2002.
  • Gotoh, H., Sakai, T. & M. Hayashi: Lagrangian Two-Phase Flow Model for the Wave Generation Process due to Large-Scale Landslides, Proc. APCE 2001, Dalian, China, pp. 176-185, 2001.
  • Gotoh, H. & Fredsoe, J.: Lagrangian Two-Phase Flow Model of the Settling Behavior of Fine Sediment Dumped into Water, Proc. ICCE, Sydny, Australia, pp.3906-3919, 2000.
  • Hayashi, M., Gotoh, H., Memita, T. & Sakai, T.: Gridless Numerical Analysis of Wave Breaking and Overtopping at Upright Seawall, Proc. ICCE, Sydny, Australia, pp.2100-2113, 2000.
  • 林 稔・後藤仁志・酒井哲郎:固定壁粒子配列に起因する数密度不均質性の改善,計算工学講演会論文集, Vol. 6, pp. 505-508, 2001.
  • 後藤仁志:MPS法の河川・海岸工学的諸問題への適用の試み,計算工学講演会論文集, Vol. 5, pp. 261-264, 2000.

数値流砂水理学

  • Harada, E., Gotoh, H. & Tsuruta, N.: Large eddy simulation for settling block using Euler-Lagrange coupling approach, Proc. Coastal Structures 2011, Yokohama, on CD-ROM, 2011.
  • Harada, E. and Gotoh, H.: Highly Precise Simulation of Sedimentation Process of Rubble Mound by Multi-Phase Flow Model with LES, Proc. APAC, 2009, Singapore, paper on CD-ROM, 2009.
  • Harada, E. and Gotoh, H.: Numerical simulation for vertical sorting of granular particles in sheetflow by two-phase turbulent flow model, Proc. Coastal Dynamics, Tokyo, Japan, Paper No. 90 pp.1-10, 2009.
  • Harada, E., Gotoh, H. and Tsuruta, N.: A sediment process of a group of blocks by DNS, Proc. Coastal Dynamics, Tokyo, Japan, Paper No. 92 pp.1-11, 2009.
  • Harada, E. and Gotoh, H.: Large eddy simulation of particle-laden flow by using solid/liquid two-phase flow model, Proc. ISOPE-2009, Osaka, Japan, pp. 453-457, 2009.
  • Sakai, T., Harada, E. and Gotoh, H.: 3D Lagrangian simulation of compaction process of wave dissipating blocks due to high waves, Proc. ICCE, Hamburg, Germany,pp.3412-3422, 2008.
  • Hajivalie, F., Yeganeh, A. and Gotoh, H.: Two-Phase Flow Simulation on Local Scouring in front of a Vertical Breakwater under Tidal Currents, Advances in Hydro-Science and -Engineering, Vol. IV - Proc. 8th ICHE, Nagoya Japan, paper on CD-ROM, 2008.
  • Harada, E. and Gotoh, H.: A Compaction Process of Wave Dissipating Blocks due to High Waves Simulated by 3D Lagrangian Model, Advances in Hydro-Science and -Engineering, Vol. IV - Proc. 8th ICHE, Nagoya Japan, paper on CD-ROM, 2008.
  • Harada, E., Gotoh, H. & Sakai, T.:3D Lagrangian Simulation of Compaction Process of Wave-Dissipating Blocks due to High Waves, Proc. Violent Flows-2007, Fukuoka, Japan, pp.221-226, 2007.
  • Harada, E., Hosoda, T. & Gotoh, H.: Numerical Simulation of the Covering a House by a Debris Fow, Proc. of the 3rd International Conference on Fluival Hydraulics, Portugal Lisbon, pp.1401-1406 on CD-ROM, (ISBN 0-415-40815-6), 2006.
  • Harada, E. & Gotoh, H.: Influence of Sand Shape to Vertical Sorting under Uniform Fow Condition, Proc. of the 3rd International Conference on Fluival Hydraulics, Portugal Lisbon, pp.853-858 on CD-ROM, (ISBN 0-415-40815-6), 2006.
  • Harada, E., Hosoda, T. & Gotoh, H.: Examination of Landside Mechanism due to Liquefaction, ISFCD2005, Kyoto, Japan, on CD, 2005.
  • Harada, E. & Gotoh, H.: Numerical Simulation for Collapse Process of House due to Iandslide, ISFCD2005, Kyoto, Japan, on CD, 2005
  • Harada, E., Gotoh, H. & Sakai, T.: Particle-System Simulation of Pipelines Floatation due to Seabed Liquefaction, Proc. APAC2005, on CD, 2005.
  • Harada, E., Gotoh H. & Sakai, T.: Simulation of Formation Process of Debris Fan by 3D Granular Material Model, Advances in Hydro-Science and -Engineering, Vol. VI - Proc. 6th ICHE, Brisbane, Australia, paper on CD-ROM, 2004.
  • Harada, E., Hosoda, T. & Gotoh H.: Numerical Simulation for Destruction Process of Rubble Stones Dam, River Flow 2004, Napol,Italy, pp. 877-884, 2004.
  • Harada, E., Hosoda, T., Gotoh H. & Obayashi K.: Numerical Simulation of Local Scouring Process by Solid-Liquid Two-Phase Flow Model, ISEH&IAHR-APD, Hong Kong, pp. 1851-1857, 2004.
  • Harada, E., Gotoh, H., Sakai, T. & Ohno, M.: Numerical Simulation of Deformation Process of Wave-Dissipating Blocks by 3D-DEM, Proc. APAC, 2003, Makuhari-Japan, paper on CD-ROM, 2003.
  • Sakai, T., Gotoh, H., Harada, E. & Imoto, Y.: Subsidence of Rubble Stones due to Wave-Induced Seabed Liquefaction, Proc. APAC, 2003, Makuhari-Japan, paper on CD-ROM, 2003.
  • Sakai T., Gotoh, H., Harada E. & A. Yeganeh-Bakhtiary: Unsteadiness of Armoring in Oscillatory Sheetflow of Graded-Sediment, Proc. ICCE, Cardiff, UK, pp.2968-2980, 2002.
  • Harada, E., Gotoh, H. & Sakai, T.: Block/Block Interaction Model for Predicting Catastrophic Destruction of Armor Blocks, Proc. 13th IAHR-APD Cong., Singapore, Vol. 2, pp. 789-794, 2002.
  • Sakai, T., Gotoh, H., Harada, E., Takahashi, T. & Y. Hama: Unsteady Armoring in Graded-Sediment Sheetflow under Oscillatory Flow, Proc. APCE 2001, Dalian, China, pp. 766-775, 2001.
  • Yeganeh-Bakthiary, A., Harada, E., Gotoh, H. & Sakai, T.: Reverse Grading Process of Sheet-Fow Sediment Transport with Granular Material Model, 2nd IAHR Symp. on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, pp.131-140, 2001.
  • Harada, E., Gotoh, H. & Sakai, T.: Granular-Material-Model Combined Two-Phase Fow Simulation for Wind-Blown Sand Layer, 2nd IAHR Symp. on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, pp.121-130, 2001.
  • Gotoh, H., Harada, E. & Sakai, T.: Role of Interparticle Collision on Instability of Sand Bed, 2nd IAHR Symp. on River, Coastal and Estuarine Morphodynamics, Obihiro, Japan, pp.111-120, 2001.
  • Sakai, T., Gotoh, H., Oki, K. & Takahashi, T.: Vertical Grading of Mixed-Size Grains in Sheetflow Regime under Oscillatory Flow, Proc. ICCE, Sydny, Australia, pp.2766-2779, 2000.
  • Yeganeh-Bakhtiary, A., Harada, E., Gotoh, H. & Sakai, T.: Aerodynamic Granular-Material Model of Wind-Blown Sand Layer, Proc. ICCE, Sydny, Australia, pp.2575-2588, 2000.
  • Yeganeh, A., Gotoh, H. & Sakai, T.:Numerical Modelling of Sheet-Flow Transport under Wave and Current, Proc. of Inter. Conf. on Hydroscience and Engineering, Seoul, paper on CD-ROM, 2000.
  • Gotoh, H. & Sakai, T.:Numerical Simulation of Granular Assembles Flowing on a Slope, Proc. XXVII th IAHR Conf., SanFrancisco, USA, Vol. 2, pp.1298-1303, 1997.
  • Sakai, T. & Gotoh, H.: Effect of Wave-Induced-Pressure on Seabed Configulation, Proc. ICCE, Florida, USA, pp.3155-3168, 1996.
  • Sakai, T. & Gotoh, H.: Numerical Simulation of Sediment Transport in Sheetflow Regime, Proc. IAHR Congress, London, UK, Vol. 3, pp. 299-304, 1995 .
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.: Two-Phase-Flow Model of Open-Channel Flow with Saltating Particles, Proc. IAHR Congress, London, UK, Vol. 2, pp. 243-248, 1995 .
  • Tsujimoto, T., Gotoh, H. & Nakagawa, H.: Open-Channel-Flow with Suspended Sediment Particles, Proc. IAHR Congress, London, UK, Vol. 2, pp. 232-237, 1995 .
  • Tsujimoto, T., Gotoh, H. & Nakagawa, H.: Momentum Exchange between Fluid and Particles and Mutual Collisions among Particles in Saltation Layer , Proc. ICMF, Kyoto, Japan, pp.PT4- 33-40, 1995.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.: Numerical Simulation of Open-Channel Flow with Suspended Sediment as Solid/Liquid Two Phese Flow, Proc. ICMF, Kyoto, Japan, pp.EN- 3-10, 1995.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.: Dynamic Responce of Suspended Particles to Spectral Characteristics of Turbulence and Stochastic Simulation of Suspension, Proc. ICHE, Beijing, pp.2077-2084, 1995.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.: Sediment-Cloud Based Model of Suspension over Ripple Bed due to Wave Action, Proc. ICCE, Kobe, Japan, pp.2013-2027, 1994.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.: Modeling of Interphase Momentum Transfer and Interparticle Collision in Bed-Load Layer, Proc. APD-IAHR, Singapore, pp.565-572,1994.
  • Gotoh, H., Tsujimoto, T. & Nakagawa, H.: Numerical Model of Granular Medium for the Dynamics of Bed-Load Layer, Proc. IAHR Congress, Tokyo, Japan, B-1-4, pp.33-40, 1993.
  • Nakagawa, H., Tsujimoto, T. & Gotoh, H.:Numerical Simulation of Bed-Load Layer as Two-Phase Fow, Proc. Int. Conf. on Hydro-Science &-Engrg., Washington D.C., USA, pp.638-645, 1993.
  • Nakagawa, H., Tsujimoto, T. & Gotoh, H.: Stochastic Simulation of Bed-Load Transport under Oscillation-Current Coexisting Fow, Proc. 6th Int. Sym. on Stochastic Hydraulics, Taipei, pp.197-204, 1992.
  • 原田英治・後藤仁志・喜田和幸:DEMを用いた固液混相流モデルによる粒子沈降・堆積過程の数値シミュレーション,第21回数値流体力学シンポジウム, A8-1, 1-5, 2007.
  • 後藤仁志:移動床水理学における計算力学的アプローチ,第4回オーガナイズド混相流フォーラム講演論文集, OMF, 2000-Takayama, pp. 109-116, 2000.
  • 辻本哲郎・後藤仁志・中川博次:流体・粒子間干渉を考慮した浮遊砂流の数値シミュレーション,第14回混相流シンポジウム論文集, pp. 218-221, 1995.
  • 後藤仁志・辻本哲郎・中川博次:掃流粒子の運動解析に乱れの影響を考慮した流体・粒子相互作用系のモデリング,第14回混相流シンポジウム論文集, pp. 214-217, 1995.
  • 辻本哲郎・後藤仁志・中川博次:水流による掃流層における流体・粒子及び粒子間干渉,第13回混相流シンポジウム論文集, pp.313-316, 1994.
  • 中川博次・辻本哲郎・村上正吾・後藤仁志:Saltation 粒子の浮遊砂への遷移機構,第32回水理講演会論文集, pp.529-534, 1988.

群集行動モデル

  • Abustan, S.M., Harada, E. & Gotoh, H.: Numerical Simulation for Evacuation Process against Tsunami Disaster at Teluk Batik in Malaysia by Multi-agent DEM Model, Proc. International Session in Conf. of Coast Eng., Vol.3, JSCE, pp. 56-60, 2012.
  • Abustan, S.M., Harada, E. & Gotoh, H.: Numerical Simulation for Evacuation Process against Tsunami Disaster at Miami Beach in Penang, Malaysia, Proc. International Session in Conf. of Coast Eng., Vol.2, JSCE, pp. 31-35, 2011.
  • Gotoh, H., Harada, E. and Ohniwa, K.: Contribution of the Evacuation Simulator for a Town Area Remodeling Plan for Protection against Disasters of Tsunami, Proc. APAC, 2009, Singapore, paper on CD-ROM, 2009.
  • Gotoh, H., Harada, E. and Ohniwa, K.: Numerical simulation of coastal town planning against tsunami by DEM-base human behavior simulator, Proc. ISOPE-2009, Osaka, Japan, pp. 1248-1252, 2009.
  • Gotoh, H., Harada, E., Maruyama, Y. and Takahashi, K.: Discrete Crowd Model for Simulation of Tsunami-Flood Refuge, Advances in Hydro-Science and -Engineering, Vol. IV - Proc. 8th ICHE, Nagoya Japan, paper on CD-ROM, 2008.
  • Harada, E., Gotoh, H., Kubo, Y. & Sakai, T.: Particle-system Simulation of Crowd Behavior in Tsunami Flood Refuge, Proc MPMD-2005, Kyoto, Japan, pp. 329-334, 2005.

海岸工学一般

  • Hur, Y. Harada, E., Gotoh, H. & Sakai, T.: Cave Formation Process in Artificial Sand Beach by 3D Movable Bed Simulator, Proc. APAC2005, on CD, 2005.
  • Sakai, T., Gotoh, H. & Harada, E.: 3D Numerical Simulation of Cassion-Side Cave Formation in Artificial Sand Beach, Advances in Hydro-Science and -Engineering, Vol. VI - Proc. 6th ICHE, Brisbane, Australia, paper on CD-ROM, 2004.
  • Gotoh, H. & Sakai, T.: Bivalve Habitat Based on Sediment-Transport Mechanics, Proc. ICCE, Florida, USA, pp.4300-4313, 1996.
  • Gotoh, H. & Sakai, T.: Mechanics of Sediment Transport for Estimating Habitable Condition of Bivalves in Baech, Proc. Ecohydraulics 2000,Quebec City, Canada, Vol. A, 343-354, 1996.
  • Sakai, T., Gotoh, H. & Yamamoto, T.: Block Subsidence under Pressure and Flow, Proc. ICCE, Kobe, Japan, pp.1541- 1552, 1994.


受 賞

cej2011   nakanishi2011

nakanishi cejaw2008 PBA 

 

海岸工学論文賞,2023.

  • 受賞者:清水裕真・Khayyer Abbas・後藤仁志・杉本寛明
  • 題 目:δ-SPH法による水面波の高精度計算のための改良型圧力勾配項の提案

海岸工学論文奨励賞,2023.

  • 受賞者:田﨑拓海
  • 題 目:3D-DEM-MPS法による孤立遡上波下の砂漣形成機構の検討 
  • 著 者:田﨑拓海・原田英治・後藤仁志・芝 遼太

CEJ (Coastal Engineering Journal) Award of 2011, 2012.

  • 受賞者:Eiji Harada, Hitoshi Gotoh and Naoki Tsuruta
  • 題 目:Numerical Simulation for Sedimentation Process of Blocks on a Sea Bed by High-Resolution Multiphase Model
  • 説 明:ブロックの沈降過程を高解像度固液混相LESで詳細にシミュレーションした論文が,当該年度に国際学術誌Coastal Engineering Journalに掲載された論文の中で最優秀と判定され受賞.

日本海洋工学会 JAMSTEC中西賞, 2012.

  • 受賞者:原田英治・後藤仁志・鶴田修己
  • 説 明:未知なる海洋の自然に関する新たな課題に取り組み,海洋工学の発展と技術の進展に関する顕著な業績をあげたことに対して授与.

CEJ (Coastal Engineering Journal) Award of 2008, 2009.

  • 受賞者:Eiji Harada and Hitoshi Gotoh
  • 題 目:Computational Mechanics of Vertical Sorting of Sediment in Sheet Flow Regime by 3D Granular Material Model
  • 説 明:シートフロー層の可視化実験と個別要素法型の粒状体モデルによる数値シミュレーションによりシートフロー漂砂の鉛直分級機構を明らかにした論文が,当該年度に国際学術誌Coastal Engineering Journalに掲載された論文の中で最優秀と判定され受賞

日本海洋工学会 JAMSTEC中西賞, 2009.

  • 受賞者:原田英治・後藤仁志
  • 説 明:未知なる海洋の自然に関する新たな課題に取り組み,海洋工学の発展と技術の進展に関する顕著な業績をあげたことに対して授与.

Best Paper Award of International Secessions in 52nd Annual Meeting of Hydraulic Engineering, Japan Society of Civil Engineers, 2008.

  • 受賞者:Abbas Khayyer
  • 題 目: Refined Simulation of Solitary Plunging Breaker by CMPS Method 
  • 説 明:高精度粒子法で巻き波型砕波を解析した論文(共著者:後藤仁志).

土木学会論文奨励賞, 2007.

  • 受賞者:原田英治
  • 題 目:三次元数値移動床による混合粒径シートフロー漂砂の分級過程の解析 
  • 説 明:数値移動床を用いてシートフロー漂砂の分級過程を計算力学的にとらえた論文(共著者:後藤仁志).

CEJ (Coastal Engineering Journal) Award of 2005, 2006.

  • 受賞者:Hitoshi Gotoh, Hiroyuki Ikari, Tetsu Memita and Tetsuo Sakai
  • 題 目:Lagrangian Particle Method for Simulation of Wave Overtopping on a Vertical Seawall 
  • 説 明:粒子法を用いて直立堤前面の砕波・越波を解析し,既存の数値モデルの越波量予測の精度を大幅に改善することに成功した論文が,当該年度に国際学術誌Coastal Engineering Journalに掲載された論文の中で最優秀と判定され受賞.

APAC Best Paper Award of 2003(最優秀論文賞), 2004.

  • 受賞者:Hitoshi Gotoh, Minoru Hayashi, Teteuo Sakai and Koji Oda
  • 題 目:Numerical Model of Wave Breaking by Lagrangian Particle Method with Sub-Particle-Scale Turbulence Model
  • 説 明:粒子法を用いて高Reynolds数流れにおける粒子スケール以下の乱流構造を記述するサブモデルの開発とその砕波現象への適用をとりまとめた論文.

土木学会論文奨励賞, 1993.

  • 受賞者:後藤仁志
  • 題 目:砂粒子の運動機構を考慮した非定常流砂課程の数値モデルに関する研究(総合題目)

水工学論文奨励賞, 1993.

  • 受賞者:渡辺幹広・後藤仁志
  • 題 目:粒子間干渉を考慮した掃流層の数値シミュレーション

  

 

Page Top